Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-06-04

Nanoparticles with Aggregation-Induced Emission for Monitoring Long Time Cell Membrane Interactions

By Hao Cheng, Wei Qin, Zhen Feng Zhu, Jun Qian, Anjun Qin, Ben Zhong Tang, and Sailing He
Progress In Electromagnetics Research, Vol. 140, 313-325, 2013
doi:10.2528/PIER13040212

Abstract

We perform the long time monitoring of nanoparticle-cell membrane interaction with high spatial and temporal resolution. The 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN) is doped in organically modified silica (ORMOSIL) to be a biocompatible nanoprobe, which displays an aggregation-induced emission (AIE) effect. Photobleaching resistance of this synthesized nanoparticle is tested and compared with its similar counterpart, which proves its superiority and capability of long term fluorescence emission. We utilize the objective-based total internal reflection microscopy combined with the living cell incubation platform to investigate the cell uptake process of this nanoparticle in real time.

Citation


Hao Cheng, Wei Qin, Zhen Feng Zhu, Jun Qian, Anjun Qin, Ben Zhong Tang, and Sailing He, "Nanoparticles with Aggregation-Induced Emission for Monitoring Long Time Cell Membrane Interactions," Progress In Electromagnetics Research, Vol. 140, 313-325, 2013.
doi:10.2528/PIER13040212
http://www.jpier.org/PIER/pier.php?paper=13040212

References


    1. Birks, J. B., Photophysics of Aromatic Molecules, 1970.

    2. Qin, W., D. Ding, J. Z. Liu, W. Z. Yuan, Y. Hu, B. Liu, and B. Z. Tang, "Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications," Adv. Funct. Mater., Vol. 22, No. 4, 771-779, 2012.
    doi:10.1002/adfm.201102191

    3. Yuan, W. Z., P. Lu, S. M. Chen, J. W. Y. Lam, Z. M. Wang, Y. Liu, H. S. Kwok, Y. G. Ma, and B. Z. Tang, "Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state," Adv. Mater., Vol. 22, No. 19, 2159, 2010.
    doi:10.1002/adma.200904056

    4. Luo, J. D., Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, and B. Z. Tang, "Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole," Chem. Commun., Vol. 18, 1740-1741, 2001.
    doi:10.1039/b105159h

    5. Hong, Y. N., J. W. Y. Lam, and B. Z. Tang, "Aggregation-induced emission: Phenomenon, mechanism and applications," Chem. Commun., Vol. 29, 4332-4353, 2009.
    doi:10.1039/b904665h

    6. Yu, Y., Y. N. Hong, C. Feng, J. Z. Liu, J. W. Y. Lam, M. T. Faisal, K. M. Ng, K. Q. Luo, and B. Z. Tang, "Synthesis of an AIE-active fluorogen and its application in cell imaging," Sci. China Ser. B, Vol. 52, No. 1, 15-19, 2009.
    doi:10.1007/s11426-009-0008-0

    7. Axelrod, D., "Total internal reflection fluorescence microscopy in cell biology," Traffic, Vol. 2, No. 11, 764-774, 2001.
    doi:10.1034/j.1600-0854.2001.21104.x

    8. Jaiswal, J. K. and S. M. Simon, "Imaging single events at the cell membrane," Nat. Chem. Biol., Vol. 3, No. 2, 92-98, 2007.
    doi:10.1038/nchembio855

    9. Ruthardt, N., D. C. Lamb, and C. Brauchle, "Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles," Mol. Ther., Vol. 19, No. 7, 1199-1211, 2011.
    doi:10.1038/mt.2011.102

    10. Thompson, N. L. and B. L. Steele, "Total internal reflection with fluorescence correlation spectroscopy," Nat. Protoc., Vol. 2, No. 4, 878-890, 2007.
    doi:10.1038/nprot.2007.110

    11. Toomre, D. and J. Bewersdorf, "A new wave of cellular imaging," Annu. Rev. Cell Dev. Bi., Vol. 26, 285-314, 2010.
    doi:10.1146/annurev-cellbio-100109-104048

    12. Li, K., W. Qin, D. Ding, N. Tomczak, J. L. Geng, R. R. Liu, J. Z. Liu, X. H. Zhang, H. W. Liu, B. Liu, and B. Z. Tang, "Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing," Sci. Rep., Vol. 3, UK, 2013.

    13. Wang, D., J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, "Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging," Biomaterials, Vol. 32, No. 25, 5880-5888, 2011.
    doi:10.1016/j.biomaterials.2011.04.080

    14. Qian, J., X. Li, M. Wei, X. W. Gao, Z. P. Xu, and S. L. He, "Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging," Opt. Express, Vol. 16, No. 24, 19568-19578, 2008.
    doi:10.1364/OE.16.019568

    15. Lotito, V., U. Sennhauser C. V. Hafner, and G.-L. Bona, "Interaction of an asymmetric scanning near field optical microscopy probe with fluorescent molecules," Progress In Electromagnetics Research, Vol. 121, 281-299, 2011.
    doi:10.2528/PIER11091703

    16. Bohmer, M. and J. Enderlein, "Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. B, Vol. 20, No. 3, 554-559, 2003.
    doi:10.1364/JOSAB.20.000554

    17. Roy, R., S. Hohng, and T. Ha, "A practical guide to single-molecule FRET," Nat. Methods, Vol. 5, No. 6, 507-516, 2008.
    doi:10.1038/nmeth.1208

    18. Gustafsson, M. G. L., "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Pro. Natl. Acad. Sci. USA, Vol. 102, No. 37, 13081-13086, 2005.
    doi:10.1073/pnas.0406877102

    19. Rust, M. J., M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods, Vol. 3, No. 10, 793-795, 2006.
    doi:10.1038/nmeth929