Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Multi-Band Negative Refractive Index in Ferrite-Based Metamaterials

By Ke Bi, Ji Zhou, Xiaoming Liu, Chuwen Lan, and Hongjie Zhao
Progress In Electromagnetics Research, Vol. 140, 457-469, 2013


A multi-band ferrite-based metamaterial has been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance (FMR) frequency which can be influenced by the saturation magnetization 4πMs of the ferrites. Due to having multiple negative permeability frequency regions around the multiple FMR frequencies, the metamaterials consisting of metallic wires and ferrite rods with various 4πMs possess several passbands in the transmission spectra. The microwave transmission properties of the ferrite-based metamaterials can be not only tuned by the applied magnetic field, but also adjusted by the 4πMs of the ferrite rods. A good agreement between experimental and simulated results is demonstrated, which confirms that such a ferrite-based metamaterial possesses a tunable multi-band behavior. This approach opens a new way for designing multi-band metamaterials.


Ke Bi, Ji Zhou, Xiaoming Liu, Chuwen Lan, and Hongjie Zhao, "Multi-Band Negative Refractive Index in Ferrite-Based Metamaterials," Progress In Electromagnetics Research, Vol. 140, 457-469, 2013.


    1. Veselago, V. G., "The electrodynamics of substance simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

    3. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.

    4. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.

    5. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.

    6. Dong, W., L. Gao, and C.-W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.

    7. Seddon, N. and T. Bearpark, "Observation of the inverse Doppler effect," Science, Vol. 302, 1537-1540, 2003.

    8. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.

    9. Zhao, Y., F. Chen, H. Chen, N. Li, Q. Shen, and L. Zhang, "The microstructure design optimization of negative index metamaterials using genetic algorithm ," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.

    10. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

    11. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.

    12. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction of a combined double S-shaped metamaterial," Appl. Phys. Lett., Vol. 86, 151909, 2005.

    13. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    14. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.

    15. Djeffal, Z. E., H. Talleb, D. Lautru, and V. Fouad-Hanna, "Negative refractive index behavior through magneto-electric coupling in split ring resonators ," Progress In Electromagnetics Research Letters, Vol. 22, 155-163, 2011.

    16. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split ring resonator-based left-handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.

    17. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi-static model," Microwave Opt. Technol. Lett., Vol. 35, 47-51, 2002.

    18. Zhong, J., Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordon, "Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs," Appl. Phys. A, Vol. 108, 329-335, 2012.

    19. Kang, L., Q. Zhao, H. Zhao, and J. Zhou, "Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite," Appl. Phys. Lett., Vol. 93, 171909, 2008.

    20. Guo, W., L. He, B. Li, T. Teng, and X.-W. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure ," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.

    21. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

    22. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.

    23. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.

    24. Sabah, C. and H. G. Roskos, "Dual-band polarization-independent sub-terahertz fishnet metamaterial," Curr. Appl. Phys., Vol. 12, 443-450, 2012.

    25. Dewar, G., "Candidates for μ< 0, ε< 0 nanostructures," Int. J. Mod. Phys. B, Vol. 15, 3258-3265, 2001.

    26. Vella-Coleiro, G. P., "Resonant motion of domain walls in yttrium gadolinium iron garnets," J. Appl. Phys., Vol. 43, 2428-2430, 1972.

    27. Tsutaoka, T., M. Ueshima, T. Tokunaga, T. Nakamura, and K. Hatakeyama, "Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials," J. Appl. Phys., Vol. 78, 3983-3991, 1995.

    28. Zhao, H., J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires ," Appl. Phys. Lett., Vol. 91, 131107, 2007.

    29. Dewar, G., "A thin wire array and magnetic host structure with n < 0," J. Appl. Phys., Vol. 97, 10Q101, 2005.

    30. He, Y., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magn. Magn. Mater., Vol. 313, 187-191, 2007.

    31. He, P., J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, "Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite," J. Phys. D: Appl. Phys., Vol. 42, 155005, 2009.

    32. Xu, F., Y. Bai, L. Qiao, H. Zhao, and J. Zhou, "Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material ," J. Phys. D: Appl. Phys., Vol. 42, 025403, 2009.

    33. Zhao, H., J. Zhou, L. Kang, and Q. Zhao, "Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires ," Opt. Express, Vol. 17, 13373-13380, 2009.

    34. Poo, Y., R.-X. Wu, G.-H. He, P. Chen, J. Xu, and R.-F. Chen, "Experimental verification of a tunable left-handed material by bias magnetic fields," Appl. Phys. Lett., Vol. 96, 161902, 2010.

    35. Huang, Y. J., G. J. Wen, Y. J. Yang, and K. Xie, "Tunable dual-band ferrite-based metamaterials with dual negative refractions," Appl. Phys. A, Vol. 106, 79-86, 2011.

    36. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.