Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-31

Asymmetric Transmission of Linearly Polarized Waves and Dynamically Wave Rotation Using Chiral Metamaterial

By Furkan Dincer, Cumali Sabah, Muharrem Karaaslan, Emin Unal, Mehmet Bakir, and Utku Erdiven
Progress In Electromagnetics Research, Vol. 140, 227-239, 2013
doi:10.2528/PIER13050601

Abstract

The asymmetric transmission of the linearly polarized waves at normal incidence through the lossy anisotropic chiral structure is demonstrated. The proposed chiral metamaterial structure is composed of bi-layered discontinuous cross-wire-strips, and it is utilized in order to realize polarization rotation. Firstly, the theoretical relations between the incident polarization and the polarization rotation are derived using transmission matrices. Secondly, a strong and dynamically asymmetric transmission of linearly polarized electromagnetic wave through the chiral metamaterial has been demonstrated for microwave region, both by simulation and experimentally. The experiment results are in good agreement with the simulation ones. It can be seen from the results that the proposed chiral metamaterial structure can be used to design novel polarization control devices for several frequency regions.

Citation


Furkan Dincer, Cumali Sabah, Muharrem Karaaslan, Emin Unal, Mehmet Bakir, and Utku Erdiven, "Asymmetric Transmission of Linearly Polarized Waves and Dynamically Wave Rotation Using Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601
http://www.jpier.org/PIER/pier.php?paper=13050601

References


    1. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.

    2. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
    doi:10.2528/PIER11112605

    3. Dong, J. F., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
    doi:10.2528/PIER09062604

    4. Cheng, Y., Y. Nie, L. Wu, and R. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

    5. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.

    6. Da, H. and C. W. Qiu, "Graphene-based photonic crystal to steer giant Faraday rotation," Appl. Phys. Lett., Vol. 100, 241106, 2012.
    doi:10.1063/1.4729134

    7. Faruque, M. R., L. Huang, X. X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

    8. Chen, H. S., L. Huang, X. X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

    9. Karaaslan, M. and F. Karadag, "Adjustable sub-wavelength waveguide by uniaxially designed artificial magnetic media," Optoelectron. Adv. Mat., Vol. 33, 578-580, 2009.

    10. Smith, D. R. and N. Kroll, "Negative refraction index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
    doi:10.1103/PhysRevLett.85.2933

    11. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
    doi:10.1126/science.1108759

    12. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    13. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,\, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    14. He, Y., J. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.

    15. Zhang, F., V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, "Coupling effect for dielectric metamaterial dimer," Progress In Electromagnetics Research, Vol. 132, 587-601, 2012.

    16. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index ," Phys. Rev. B, Vol. 83, 035105-4, 2011.

    17. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    doi:10.2528/PIER09031306

    18. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in an optical metamaterial slab," Progress In Electromagnetics Research, Vol. 132, 129-148, 2012.

    19. Yan, S. and G. A. E. Vandenbosch, "Increasing the NRI bandwidth of dielectric sphere-based metamaterials by coating," Progress In Electromagnetics Research, Vol. 132, 1-23, 2012.

    20. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, 167401-4, 2006.
    doi:10.1103/PhysRevLett.97.167401

    21. Kang, M., J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, 8347-8356, 2011.
    doi:10.1364/OE.19.008347

    22. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Asymmetric transmission: A generic property of two-dimensional periodic patterns," J. Optics, Vol. 13, 024006-6, 2011.

    23. Guo, W., L. He, B. Li, T. Teng, and X. W. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.

    24. Menzel, C., C. Helgert, C. Rockstuhl, E. B. Kley, A. TÄunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902-4, 2010.

    25. Huang, C., Y. Feng, J. Zhao, Z.Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131-5, 2012.

    26. Huang, C., J. Zhao, T. Jiang, and Y. Feng, "Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1192-1202, 2012.
    doi:10.1080/09205071.2012.710568

    27. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukolis, "Chiral metamaterials: Simulations and experiments," Journal of Optics A: Pure and Applied Optics, Vol. 11, 114003-13, 2009.

    28. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104-4, 2009.

    29. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. Optics, Vol. 15, 023001, 2013.
    doi:10.1088/2040-8978/15/2/023001

    30. Li, Z., H. Caglayan, E. Colak, J. Zhou, C. M. Soukoulis, and E. Ozbay, "Coupling effect between two adjacent chiral structure layers ," Opt. Express, Vol. 18, 5375-5383, 2010.
    doi:10.1364/OE.18.005375

    31. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four `U' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901-3, 2010.