Vol. 142

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-09-04

A 23-GHz Bandwidth Automatic Gain Control Amplifier with Wide Dynamic Range for High Speed Communication

By Bo Zhang, Yong-Zhong Xiong, Lei Wang, Sanming Hu, and Joshua Le-Wei Li
Progress In Electromagnetics Research, Vol. 142, 261-273, 2013
doi:10.2528/PIER13062001

Abstract

In this paper, a wide bandwidth and wide dynamic range AGC amplifier is presented. A push-pull variable gain amplifier (VGA) structure is proposed for wide dynamic rang. Moreover the bandwidth enhancement technique is used in the post amplifier design to ensure the wide bandwidth and gain of whole circuit. The experimental results demonstrate that the proposed AGC amplifier that is fabricated in 0.13 μm SiGe BiCMOS process, achieves a 23-GHz bandwidth and 36-dB dynamic rang among the recently published AGC amplifiers, whereas the power and area consumption are 57.6 mW and 1.9 mm2, respectively.

Citation


Bo Zhang, Yong-Zhong Xiong, Lei Wang, Sanming Hu, and Joshua Le-Wei Li, "A 23-GHz Bandwidth Automatic Gain Control Amplifier with Wide Dynamic Range for High Speed Communication," Progress In Electromagnetics Research, Vol. 142, 261-273, 2013.
doi:10.2528/PIER13062001
http://www.jpier.org/PIER/pier.php?paper=13062001

References


    1. Deng, L., D. Liu, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/s 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress In Electromagnetics Research, Vol. 126, 449-461, 2012.
    doi:10.2528/PIER12013006

    2. Yang, M.-H., F.-H. Guan, J. Xu, X. Shi, and X.-W. Sun, "Signal model analysis of a 35 GHz alternating current direct detection receiver," Progress In Electromagnetics Research, Vol. 88, 275-287, 2008.
    doi:10.2528/PIER08111605

    3. Dyadyuk, V., J. D. Bunton, J. Pathikulangara, R. Kendall, O. Sevimli, L. Stokes, and D. A. Abbott, "A multigigabit millimeter-wave communication system with improved spectral efficiency," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2813-2821, Dec. 2007.
    doi:10.1109/TMTT.2007.909875

    4. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-499, 2008.
    doi:10.2528/PIER08081003

    5. Hirata, A., T. Kosugi, H. Takahashi, J. Takeuchi, H. Togo, M. Yaita, N. Kukutsu, K. Aihara, K. Murata, Y. Sato, T. Nagatsuma, and Y. Kado, "120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 3, 881-895, Mar. 2012.
    doi:10.1109/TMTT.2011.2178256

    6. Nakasha, Y., M. Sato, T. Tajima, Y. Kawano, T. Suzuki, T. Takahashi, K. Makiyama, T. Ohki, and N. Hara, "W-band transmitter and receiver for 10-Gb/s impulse radio with an optical-fiber interface," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3171-3180, Dec. 2009.
    doi:10.1109/TMTT.2009.2033242

    7. Hirata, A., R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, "10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz band millimeter-wave signal ," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 5, 1102-1109, 2009.
    doi:10.1109/TMTT.2009.2017256

    9. Kucharski, D. and K. T. Kornegay, "Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 2, 590-597, Feb. 2005.
    doi:10.1109/TMTT.2004.840731

    10. Wong, S.-K., F. KungWai Lee, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

    11. Liu, C., Y.-P. Yan, W.-L. Goh, Y.-Z. Xiong, L.-J. Zhang, and M. Madihian, "A 5-Gb/s automatic gain control amplifier with temperature compensation," IEEE J. Solid-State Circuits, Vol. 47, No. 6, 1323-1333, Jun. 2012.
    doi:10.1109/JSSC.2012.2192660

    12. Lai, J. W., Y.-J. Chuang, K. Cimino, and M. Feng, "Design of variable gain amplifier with gain-bandwidth product up to 354 GHz implemented in InP-InGaAs DHBT technology," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 2, 599-604, Feb. 2006.
    doi:10.1109/TMTT.2005.862676

    13. Liu, C., Y.-P. Yan, W.-L. Goh, Y.-Z. Xiong, L.-J. Zhang, and M. Madihian, "A 5-Gb/s automatic gain control amplifier with temperature compensation," IEEE J. Solid-State Circuits, Vol. 47, No. 6, 1323-1333, Jun. 2012.
    doi:10.1109/JSSC.2012.2192660

    14. Liao, C.-F. and S.-I. Liu, "A 10 Gb/s CMOS AGC amplifier with 35 dB dynamic range for 10Gb ethernet," IEEE ISSCC Dig. Tech. Papers, 516-517, 2006.

    15. Liao, C.-F. and S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90nm CMOS," IEEE J. Solid-State Circuits, Vol. 43, No. 3, 642-655, Mar. 2008.
    doi:10.1109/JSSC.2007.916626

    16. Wu, C.-H., C.-H. Lee, W.-S. Chen, and S.-I. Liu, "CMOS wideband amplifier using multiple inductive-series peaking technique," IEEE J. Solid-State Circuits, Vol. 40, No. 2, 548-552, Feb. 2005.
    doi:10.1109/JSSC.2004.840979

    17. Park, S.-B., J. E. Wilson, and M. Ismail, "The chip-peak detectors for multistandard wireless receivers," IEEE Circuits and Devices Magazine, Vol. 22, No. 6, 6-9, Nov. 2006.
    doi:10.1109/MCD.2006.307270