Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-05
Coherent Anti-Stokes Raman Scattering Microscopy by Dispersive Wave Generations in a Polarization Maintaining Photonic Crystal Fiber
By
Progress In Electromagnetics Research, Vol. 141, 659-670, 2013
Abstract
The polarization maintaining photonic crystal fiber (PM-PCF) with two zero dispersion wavelengths is designed and fabricated by the improved stack-and-draw technology in our laboratory. The broadband blue-shifted and red-shifted dispersive waves (DWs) are efficiently generated from soliton self-frequency shift (SSFS) along the slow axis of PM-PCF. By optimizing the pump parameters and the fiber length, the polarized DWs centered in the normal dispersion region can be used as the pump and Stokes pulses for the high resolution coherent anti-Stokes Raman scattering (CARS) microscopy. Moreover, it is demonstrated that the widely tunable relevant CARS wavelengths can be obtained by adjusting the pump wavelength. The CARS microscopy based on DWs can find important applications in detecting the biological and chemical samples with the C=N, S-H, C-H, and O-H stretch vibration resonances of 2100 to 2400 cm-1, 2500 to 2650 cm-1, 2700 to 3000 cm-1, and 3000 to 3750 cm-1.
Citation
Jinhui Yuan, Guiyao Zhou, Hongzhan Liu, Changming Xia, Xinzhu Sang, Qiang Wu, Chongxiu Yu, Kuiru Wang, Binbin Yan, Ying Han, Gerald Farrell, and Lantian Hou, "Coherent Anti-Stokes Raman Scattering Microscopy by Dispersive Wave Generations in a Polarization Maintaining Photonic Crystal Fiber," Progress In Electromagnetics Research, Vol. 141, 659-670, 2013.
doi:10.2528/PIER13070302
References

1. Duncan, M. D., J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett., Vol. 7, 350-352, 1982.
doi:10.1364/OL.7.000350

2. Cheng, J. X., L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 26, 1341-1343, 2001.
doi:10.1364/OL.26.001341

3. Evans, C. L., E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman scattering spectral interferometry: Determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy," Opt. Lett., Vol. 29, 2923-2925, 2004.
doi:10.1364/OL.29.002923

4. Kee, T. W. and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 29, 2701-2703, 2004.
doi:10.1364/OL.29.002701

5. Lefrancois, S., D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, "Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 37, 1652-1654, 2012.
doi:10.1364/OL.37.001652

6. Baumgartl, M., M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tunnermann, "All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion," Opt. Express, Vol. 20, 4484-4493, 2012.
doi:10.1364/OE.20.004484

7. Russell, P. St. J., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

8. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

9. Russell, P. St. J., "Photonic crystal fibers," J. Lightw. Technol., Vol. 24, 4729-4749, 2006.
doi:10.1109/JLT.2006.885258

10. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photon., Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285

11. Guenneau, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.
doi:10.2528/PIER02010893

12. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

13. Paulsen, H. N., K. M. Hilligs¿e, J. Th¿gersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett., Vol. 28, 1123-1125, 2003.
doi:10.1364/OL.28.001123

14. Andresen, E. R. and H. N. Paulsen, "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Soc. Am. B, Vol. 22, 1934-1938, 2005.
doi:10.1364/JOSAB.22.001934

15. Murugkar, S., C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express, Vol. 15, 14028-14037, 2007.
doi:10.1364/OE.15.014028

16. Savvin, A. D., A. A. Lanin, A. A. Voronin, A. B. Fedotov, and A. M. Zheltikov, "Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers," Opt. Lett., Vol. 35, 919-921, 2010.
doi:10.1364/OL.35.000919

17. Klarskov, P., A. Isomaki, K. P. Hansen, and P. E. Andersen, "Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers," Opt. Express, Vol. 19, 26672-26683, 2011.
doi:10.1364/OE.19.026672

18. Coen, S., A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett., Vol. 26, 1356-1358, 2001.
doi:10.1364/OL.26.001356

19. Wadsworth, W. J., A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source," J. Opt. Soc. Am. B, Vol. 19, 2148-2155, 2002.
doi:10.1364/JOSAB.19.002148

20. Dudley, J. M., L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B, Vol. 19, 765-771, 2002.
doi:10.1364/JOSAB.19.000765

21. Saitoh, K. and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, Vol. 12, 2027-2032, 2004.
doi:10.1364/OPEX.12.002027

22. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys., Vol. 78, 1135-1184, 2005.
doi:10.1103/RevModPhys.78.1135

23. Mitrokhin, V. P., A. A. Ivanov, A. B. Fedotov, M. V. Alfimov, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Y. N. Kondrat'ev, A. A. Podshivalov, and A. M. Zheltikov, "Spectral transformation ofmegawatt femtosecond optical pulses in large-mode-area high-index-step photonic-crystal fibers," Laser Phys. Lett., Vol. 4, 529-533, 2007.
doi:10.1002/lapl.200710010

24. Abedin, K. S., J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett., Vol. 81, 1384-1386, 2002.
doi:10.1063/1.1501440

25. Yang, T. T., C. Shu, and C. Lin, "Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber," Opt. Express, Vol. 13, 5409-5415, 2005.
doi:10.1364/OPEX.13.005409

26. Hu, M. L., C. Y. Wang, Y. J. Song, Y. F. Li, and L. Chai, "Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers," Opt. Express, Vol. 14, 1189-1198, 2006.
doi:10.1364/OE.14.001189

27. Asimakis, S., P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, "Towards e±cient and broadband four-wave-mixing using short-length dispersion tailored lead silicate Holey fibers," Opt. Express, Vol. 15, 596-601, 2007.
doi:10.1364/OE.15.000596

28. Sloanes, T., K. McEwan, B. Lowans, and L. Michaille, "Optimisation of high average power optical parametric generation using a photonic crystal fiber," Opt. Express, Vol. 16, 19724-19733, 2008.
doi:10.1364/OE.16.019724

29. Yuan, J. H., X. Z. Sang, C. X. Yu, Y. Han, G. Y. Zhou, S. G. Li, and L. T. Hou, "Highly eFFIcient and broadband Cherenkov radiation at the visible wavelength in the fundamental mode of photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 23, 786-788, 2011.
doi:10.1109/LPT.2011.2136431

30. Yuan, J. H., X. Z. Sang, Q. Wu, C. X. Yu, X. W. Shen, K. R. Wang, B. B. Yan, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, "Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation," Laser Phys. Lett., Vol. 10, 045405-1, 2013.

31. Peng, J. H., A. V. Sokolov, F. Benabid, F. Biancalana, P. S. Light, F. Couny, and P. J. Roberts, "Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding," Phys. Rev. A., Vol. 81, 031803(R)-1-031803(R)-4, 2010.

32. Serebryannikov, E. E., A. M. Zheltikov, S. Kohler, N. Ishii, C. Y. Teisset, T. Fuji, F. Krausz, and A. Baltuska, "Diffraction-arrested soliton self-frequency shift of few-cycle laser pulses in a photonic-crystal fiber," Phys. Rev. E, Vol. 73, 066617-1-066617-4, 2006.
doi:10.1103/PhysRevE.73.066617