Vol. 142

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-10-18

Polarization-Agile Ads-Interleaved Planar Arrays

By Giacomo Oliveri, Leonardo Lizzi, Fabrizio Robol, and Andrea Massa
Progress In Electromagnetics Research, Vol. 142, 771-798, 2013
doi:10.2528/PIER13072702

Abstract

This paper presents a class of polarization-agile arrays with controlled sidelobes. The architecture is based on the interleaving of two independently polarized sub-arrays through a deterministic strategy derived from Almost Difference Sets (ADSs). The efficiency, flexibility and reliability of the proposed design technique is assessed by means of a set of numerical simulations. Moreover, selected experiments aimed at comparing the performances of the presented approach with state-of-the-art design are provided. Finally, mutual coupling effects are numerically analyzed and discussed.

Citation


Giacomo Oliveri, Leonardo Lizzi, Fabrizio Robol, and Andrea Massa, "Polarization-Agile Ads-Interleaved Planar Arrays," Progress In Electromagnetics Research, Vol. 142, 771-798, 2013.
doi:10.2528/PIER13072702
http://www.jpier.org/PIER/pier.php?paper=13072702

References


    1. Soliman, E. A., W. De Raedt, and G. A. E. Vandenbosch, "Reconfigurable slot antenna for polarization diversity," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 905-916, 2009.
    doi:10.1163/156939309788355207

    2. Alkanhal, M. and A. F. Sheta, "A novel dual-band reconfigurable square-ring microstrip antenna," Progress In Electromagnetics Research, Vol. 70, 337-349, 2007.
    doi:10.2528/PIER07020703

    3. Nolen, J., "Phased array polarization agility," IEEE Trans. Antennas Propag., Vol. 13, No. 5, 820-821, 1965.
    doi:10.1109/TAP.1965.1138495

    4. Giuli, D., "Polarization diversity in radar," Proc. IEEE, Vol. 74, No. 2, 245-269, 1986.
    doi:10.1109/PROC.1986.13457

    5. Gao, S., A. Sambell, and S. S. Zhong, "Polarization-agile antennas," IEEE Antennas Propagat. Mag., Vol. 48, No. 3, 28-37, 2006.
    doi:10.1109/MAP.2006.1703396

    6. Simeoni, M., I. E. Lager, C. I. Coman, and A. G. Roeder, "Implementation of polarization agility in planar phased-array antennas by means of interleaved subarrays," Radio Sci., Vol. 44, No. RS5013, 1-26, 2009.

    7. Skolnik, M. I., Introduction to Radar Systems, 2nd Ed., McGraw-Hill, New York, 1981.

    8. Shaubert, D. H., F. C. Farrar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 118-123, 1981.
    doi:10.1109/TAP.1981.1142546

    9. Korosec, T., P. Ritos, and M. Vidmar, "Varactor-tuned microstrip-patch antenna with frequency and polarisation agility," Electron. Lett., Vol. 42, No. 18, 7-8, 2006.
    doi:10.1049/el:20061699

    10. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
    doi:10.2528/PIER07053002

    11. Chen, Y. B., T. B. Chen, Y. C. Jiao, and F. S. Zhang, "A recon¯gurable microstrip antenna with switchable polarization," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1391-1398, 2006.
    doi:10.1163/156939306779276820

    12. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.

    13. Vongsack, S., C. Phongcharoenpanich, S. Kosulvit, K. Hamamoto, and T. Wakabayashi, "Unidirectional antenna using two-probe excited circular ring above square reflector for polarization diversity with high isolation," Progress In Electromagnetics Research, Vol. 133, 159-176, 2013.

    14. Zhao, Y.-L., C. Gai, L. Liu, J.-P. Xiong, J. Chen, and Y.-C. Jiao, "Novel polarization reconfigurable annular ring-slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1587-1592, 2008.
    doi:10.1163/156939308786390283

    15. Sun, L., B.-H. Sun, J.-Y. Li, Y.-H. Huang, and Q.-Z. Liu, "Recon¯gurable dual circularly polarized microstrip antenna without orthogonal feeding network," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1352-1359, 2011.

    16. Biffi Gentili, G. and C. Salvador, "New serially fed polarisation-agile linear array of patches," IEE Proc. Microw. Antennas Propag., Vol. 145, No. 5, 392-396, 1998.
    doi:10.1049/ip-map:19982065

    17. Zhong, S.-S., X.-X. Yang, and S.-C. Gao, "Polarization-agile microstrip antenna array using a single phase-shift circuit," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 84-87, 2004.
    doi:10.1109/TAP.2003.820953

    18. Yen, S.-C. and T.-H. Chu, "A beam-scanning and polarization agile antenna array using mutually coupled oscillating doublers," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4051-4057, 2005.
    doi:10.1109/TAP.2005.859751

    19. Huang, J., "A technique for an array to generate circular polarization with linearly polarized elements," IEEE Trans. Antennas Propagat., Vol. 34, No. 9, 1113-1124, 1986.
    doi:10.1109/TAP.1986.1143953

    20. Coman, C. I., I. E. Lager, and L. P. Ligthart, "The design of shared aperture antennas consisting of differently sized elements," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 376-383, 2006.
    doi:10.1109/TAP.2005.863382

    21. Oliveri, G., P. Rocca, and A. Massa, "Interleaved linear arrays with difference sets," Electron. Lett., Vol. 45, No. 5, 323-324, 2010.
    doi:10.1049/el.2010.2255

    22. Oliveri, G., F. Caramanica, C. Fontanari, and A. Massa, "Rectangular thinned arrays based on McFarland difference sets," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1546-1552, 2011.
    doi:10.1109/TAP.2011.2123072

    23. Leeper, D. G., "Isophoric arrays --- Massively thinned phased arrays with well-controlled sidelobes ," IEEE Trans. Antennas Propag., Vol. 47, No. 12, 1825-1835, 1999.
    doi:10.1109/8.817659

    24. Oliveri, G., M. Donelli, and A. Massa, "Genetically-designed arbitrary length almost difference sets," Electron. Lett., Vol. 45, No. 23, 1182-1183, 2009.
    doi:10.1049/el.2009.1927

    25. Arasu, K. T., C. Ding, T. Helleseth, P. V. Kumar, and H. M. Martinsen, "Almost difference sets and their sequences with optimal autocorrelation," IEEE Trans. Inf. Theory, Vol. 47, No. 7, 2934-2943, 2001.
    doi:10.1109/18.959271

    26. Zhang, Y., J. G. Lei, and S. P. Zhang, "A new family of almost difference sets and some necessary conditions," IEEE Trans. Inf. Theory, Vol. 52, No. 5, 2052-2061, 2006.
    doi:10.1109/TIT.2006.872969

    27. Oliveri, G., M. Donelli, and A. Massa, "Linear array thinning exploiting almost difference sets," IEEE Trans. Antennas Propag. , Vol. 57, No. 12, 3800-3812, 2009.
    doi:10.1109/TAP.2009.2027243

    28. Oliveri, G., L. Manica, and A. Massa, "ADS-based guidelines for thinned planar arrays," IEEE Trans. Antennas Propag., Vol. 58, 1935-1948, 2010.
    doi:10.1109/TAP.2010.2046858

    29. Oliveri, G., L. Manica, and A. Massa, "On the impact of mutual coupling effects on the PSL of ADS thinned arrays," Progress In Electromagnetic Research B, Vol. 17, 293-308, 2009.
    doi:10.2528/PIERB09082703

    30. Carlin, M., G. Oliveri, and A. Massa, "On the robustness to element failures of linear ADS-thinned arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4849-4853, 2011.
    doi:10.1109/TAP.2011.2165510

    31. Oliveri, G. and A. Massa, "Fully-interleaved linear arrays with predictable sidelobes based on almost difference sets," IET Radar, Sonar & Navigation, Vol. 4, No. 5, 649-661, 2010.
    doi:10.1049/iet-rsn.2009.0186

    32. Oliveri, G. and A. Massa, "ADS-based array design for 2D and 3D ultrasound imaging," IEEE Trans. on Ultrason., Ferroelectr., and Freq. Control, Vol. 57, No. 7, 1568-1582, 2010.
    doi:10.1109/TUFFC.2010.1587

    33. Oliveri, G., F. Caramanica, M. D. Migliore, and A. Massa, "Synthesis of non-uniform MIMO arrays through combinatorial sets," IEEE Antennas Wireless Propag. Lett., Vol. 11, 728-731, 2012.
    doi:10.1109/LAWP.2012.2205552

    34. Oliveri, G. and A. Massa, "Genetic algorithm (GA)-enhanced almost difference set (ADS)-based approach for array thinning," IET Microw. Antennas Propag., Vol. 5, No. 3, 305-315, 2011.
    doi:10.1049/iet-map.2010.0114

    35. Oliveri, G., F. Caramanica, and A. Massa, "Hybrid ADS-based techniques for radio astronomy array design," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 1817-1827, 2011.
    doi:10.1109/TAP.2011.2122228

    36. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Inc., Norwood, MA, 2005.

    37. Balanis, C. A., "Antenna Theory: Analysis and Design," Wiley, 1997.

    38. Kraus, J. D., Antennas, 2nd Ed., McGraw Hill, New York, 1988.

    39. MacWilliams, F. J. and N. J. Sloane, "Pseudo random sequences and arrays," Proc. IEEE, Vol. 64, No. 12, 1976.
    doi:10.1109/PROC.1976.10411

    40. McFarland, R. J., "A family of difference sets in non-cyclic groups," Journal of Combinatorial Theory A, Vol. 15, No. 1, 1-10, 1973.
    doi:10.1016/0097-3165(73)90031-9

    41. Turyn, R. J., "Character sum and difference sets," Pacific J. Math., Vol. 15, No. 1, 319-346, 1965.
    doi:10.2140/pjm.1965.15.319

    42., "La Jolla Cyclic Difference Set Repository,".
    doi:http://www.ccrwest.org/diffsets.html.

    43., "ELEDIA Almost Difference Set Repository,".
    doi:http://www.eledia.ing.unitn.it/.