Vol. 148
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-07
Energy Transfer for Implantable Electronics in the Electromagnetic Midfield (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 148, 151-158, 2014
Abstract
The wireless transfer of electromagnetic energy into the human body could power medical devices and enable new ways to treat various disorders. To control energy transfer, metal structures are used to generate and manipulate radio-frequency electromagnetic fields. Most systems for transfer across the biological tissue operate in the quasi-static limit, but operation beyond this regime could afford new powering capabilities. This review discusses some recent developments in the design and implementation of systems operating in the electromagnetic midfield, where transfer exploits wave-like fields in the body.
Citation
John S. Ho, and Ada S. Y. Poon, "Energy Transfer for Implantable Electronics in the Electromagnetic Midfield (Invited Paper)," Progress In Electromagnetics Research, Vol. 148, 151-158, 2014.
doi:10.2528/PIER14070603
References

1. Chandrakasan, A. P., N. Verma, and D. C. Daly, "Ultralow-power electronics for biomedical applications," Annu. Rev. of Biomed. Eng., Vol. 10, No. 1, 247-274, August 2008.
doi:10.1146/annurev.bioeng.10.061807.160547

2. Hochbaum, A. I., R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Vol. 451, No. 7175, 163-167, January 2008.
doi:10.1038/nature06381

3. Dagdeviren, C., B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M. J. Slepian, and J. A. Rogers, "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm," Proc. Natl. Acad. Sci. U.S.A., Vol. 111, No. 5, 1927-1932, 2014.
doi:10.1073/pnas.1317233111

4. Rapoport, B. I., J. T. Kedzierski, and R. Sarpeshkar, "A glucose fuel cell for implantable brain-machine interfaces," PloS One, Vol. 7, No. 6, e38436, 2012.
doi:10.1371/journal.pone.0038436

5. Mercier, P. P., A. C. Lysaght, S. Bandyopadhyay, A. P. Chandrakasan, and K. M. Stankovic, "Energy extraction from the biologic battery in the inner ear," Nat. Biotechnol., Vol. 30, No. 12, 1240-1243, 2012.
doi:10.1038/nbt.2394

6. Bashirullah, R., "Wireless implants," IEEE Microw. Mag., Vol. 11, No. 7, 2010.
doi:10.1109/MMM.2010.938579

7. Chow, E. Y., M. M. Morris, and P. P. Irazoqui, "Implantable RF medical devices: The benefits of high-speed communication and much greater communication distances in biomedical applications," IEEE Microw. Mag., Vol. 14, No. 4, 64-73, 2013.
doi:10.1109/MMM.2013.2248586

8. Ho, J. S., S. Kim, and A. S. Y. Poon, "Midfield wireless powering for implantable systems," Proc. IEEE, 1369-1378, 2013.
doi:10.1109/JPROC.2013.2251851

9. Schuder, J. C., H. E. Stephenson, Jr., and J. F. Townsend, "High-level electromagnetic energy transfer through a closed chest wall," IRE Intl. Conv. Rec., Vol. 9, 119-126, 1961.

10. Schuder, J. C., H. E. Stephenson, and J. F. Townsend, "Energy transfer into a closed chest by means of stationary coupling coils and a portable high-power oscillator," ASAIO Trans., Vol. 7, 327-331, 1961.

11. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
doi:10.1046/j.1525-1594.2002.07130.x

12. Flack, F. C., E. D. James, and D. M. Schlapp, "Mutual inductance of air-cored coils: Effect on design of radio-frequency coupled implants," Med. Biol. Eng., Vol. 9, 79-85, 1971.
doi:10.1007/BF02474736

13. Ko, W. H., S. P. Liang, and C. D. F. Fung, "Design of radio-frequency powered coils for implant instruments," Med. Biol. Eng. Comput., Vol. 15, 634-640, November 1977.

14. Heetderks, W. J., "RF powering of millimeter- and submillimeter-sized neural prosthetic implants," IEEE Trans. Biomed. Eng., Vol. 35, No. 5, 323-327, 1988.
doi:10.1109/10.1388

15. Jow, U.-M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130

16. RamRakhyani, A., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 1, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

17. Kiani, M., U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431

18. Waters, B. H., A. P. Sample, P. Bonde, and J. R. Smith, "Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (free-D) system," Proc. of the IEEE, Vol. 100, No. 1, 138-149, 2012.
doi:10.1109/JPROC.2011.2165309

19. Sample, A. P., B. H. Waters, S. T. Wisdom, and J. R. Smith, "Enabling seamless wireless power delivery in dynamic environments," Proc. IEEE, Vol. 101, No. 6, 1343-1358, 2013.
doi:10.1109/JPROC.2013.2252453

20. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 137, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

21. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3442-3449, 2010.
doi:10.1109/TAP.2010.2071351

22. Poon, A. S. Y., S. O’Driscoll, and T. H. Meng, "Optimal frequency for wireless power transmission over dispersive tissue," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1739-1749, 2010.
doi:10.1109/TAP.2010.2044310

23. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Techn., Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

24. Yu, X., S. Sandhu, S. Beiker, R. Sassoon, and S. Fan, "Wireless energy transfer with the presence of metallic planes," Appl. Phys. Lett., Vol. 99, No. 21, 214102, 2011.
doi:10.1063/1.3663576

25. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 59, No. 8, August 2012.

26. Kim, S., J. S. Ho, and A. S. Y. Poon, "Midfield wireless powering of subwavelength autonomous devices," Phys. Rev. Lett., Vol. 110, No. 20, 203905, May 2013.
doi:10.1103/PhysRevLett.110.203905

27. Poor, V., "Robust matched filters," IEEE Trans. Inf. Theory, Vol. 29, No. 5, 677-687, September 1983.
doi:10.1109/TIT.1983.1056734

28. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, Piscataway, NJ, 1995.

29. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., No. 41, 2271-2293, October 1996.

30. Kim, S., J. S. Ho, L. Y. Chen, and A. S. Y. Poon, "Wireless power transfer to a cardiac implant," Appl. Phys. Lett., Vol. 101, No. 7, 073701, 2012.
doi:10.1063/1.4745600

31. Ho, J. S., A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Y. Poon, "Wireless power transfer to deep-tissue microimplants," Proc. Natl. Acad. Sci. U.S.A., May 2014.

32. Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, "A very low-power cmos mixed-signal ic for implantable pacemaker applications," IEEE J. Solid-State Circuits, Vol. 39, No. 12, 2446-2456, December 2004.
doi:10.1109/JSSC.2004.837027

33. Pfeiffer, C. and A. Grbic, "Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, No. 19, 197401, May 2013.
doi:10.1103/PhysRevLett.110.197401

34. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, No. 2, 139-150, January 2014.
doi:10.1038/nmat3839