Vol. 157
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-11-04
Optimal Illumination Schemes for Near-Field Microwave Imaging
By
Progress In Electromagnetics Research, Vol. 157, 93-110, 2016
Abstract
Axial-null illumination (ANI) is proposed to simplify the calibration of microwave imaging systems. The illumination also enhances the spatial resolution. ANI can be achieved with various array configurations, but a minimum of two transmitting antennas are required, which is a well-known form of differential illumination. Here, ANI is achieved with four transmitting antennas, and its implementation is investigated in a planar scanning scenario. The receiving antenna resides at the radiation null of the ANI array. Back-scattered reception requires an antenna at the center of the ANI array whereas forward-scattered reception requires an antenna aligned with the ANI axis, but on the opposite side of the imaged volume. The most important advantage of the proposed imaging setup is that it eliminates the need for background (or baseline) measurements, thus simplifying the system calibration. Also, it is proven that at least two-fold improvement in the spatial resolution can be achieved in near-field imaging scenarios compared to the conventional single-source illumination.
Citation
Denys S. Shumakov, Alexander S. Beaverstone, and Natalia K. Nikolova, "Optimal Illumination Schemes for Near-Field Microwave Imaging," Progress In Electromagnetics Research, Vol. 157, 93-110, 2016.
doi:10.2528/PIER16070808
References

1. Nanzer, J., Microwave and Millimeter-wave Remote Sensing for Security Applications, Artech House, Norwood, MA, 2012.

2. Amin, M. G., Through-the-Wall Radar Imaging, CRC Press, Boca Raton, FL, 2011.

3. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic, Dordrecht, The Netherlands, 2000.
doi:10.1007/978-94-015-1303-6

4. Vorst, A. V., A. Rosen, and Y. Kotsuka, RF/Microwave Interaction with Biological Tissues, Wiley, Hoboken, NJ, 2006.

5. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-22, published on-line Apr. 25, 2014.

6. Pastorino, M., Microwave Imaging, John Wiley & Sons, Hoboken, NJ, 2010.
doi:10.1002/9780470602492.ch1

7. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An electromagnetic approach using a multi-illumination technique," IEEE Trans. Biomed. Eng., Vol. 41, No. 4, 406-409, Apr. 1994.
doi:10.1109/10.284973

8. Tseng, C.-H. and T.-H. Chu, "Improvement of quasi-monostatic frequency-swept microwave imaging of conducting objects using illumination diversity technique," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 305-312, Jan. 2005.
doi:10.1109/TAP.2004.838787

9. Helaoui, L., J. Bel Hadj Tahar, and F. Choubani, "Multi-source illumination approach for buried objects exploration," 2008 2nd Int. Conf. Dig. Soc., 146-149, Sainte Luce, Feb. 2008.

10. Zhao, Y., W. Shao, and G. Wang, "UWB microwave imaging for early breast cancer detection: Effect of two synthetic antenna array configurations," 2004 IEEE Int. Conf. Syst., Man and Cybern., Vol. 5, 4468-4473, Oct. 2004.

11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. on Microwave Theory and Tecnniques, Vol. 48, No. 11, 1841-1853, Nov. 2000.

12. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010

13. Mojabi, P., M. Ostadrahimi, L. Shafai, and J. LoVetri, "Microwave tomography techniques and algorithms: A review," Antenna Technology and Applied Electromagnetics (ANTEM), 1-4, Toulouse, France, Jun. 2012.

14. Semenov, S. Y., R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, A. G. Nazarov, Y. E. Sizov, V. G. Posukh, A. V. Pavlovsky, P. N. Repin, and G. P., "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction --- Experimental study on two-dimensional models," IEEE Trans. on Microwave Theory and Tecnniques, Vol. 48, No. 4, 538-544, Apr. 2000.
doi:10.1109/22.842025

15. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 393-396, 2010.
doi:10.1109/LAWP.2010.2049471

16. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1692-1704, Jun. 2009.
doi:10.1109/TAP.2009.2019856

17. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903

18. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 1349-1352, 2009.
doi:10.1109/LAWP.2009.2036748

19. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 055004, 1-15, 2009.

20. Viani, F., M. Donelli, P. Rocca, R. Azaro, and A. Massa, "A multi-resolution three-dimensional approach based on SVM for breast cancer detection," 24th International Review of Progress in Applied Computational Electromagnetics, 479-482, ACES, Niagara Falls, Canada, 2008.

21. Donelli, M., D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, "Multi-resolution iterative inversion of real inhomogeneous targets," Inverse Problem, Vol. 21, No. 6, S51-S63, 2005.
doi:10.1088/0266-5611/21/6/S05

22. Tu, S., J. J. McCombe, D. S. Shumakov, and N. K. Nikolova, "Fast quantitative microwave imaging with resolvent kernel extracted from measurements," Inverse Problems, Vol. 31, No. 045007, 1-33, 2015.

23. Ravan, M., R. K. Amineh, and N. K. Nikolova, "Two-dimensional near-field microwave holography," Inverse Problems, Vol. 26, No. 5, 055011, May 2010.
doi:10.1088/0266-5611/26/5/055011

24. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

25. Fritze, M., B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, "Subwavelength optical lithography with phase-shift photomasks," Lincoln Laboratory Journal, Vol. 14, No. 2, 237-250, 2003.

26. Wong, A. K.-K., Resolution Enhancement Techniques in Optical Lithography, SPIE, Bellingham, WA, 2001.
doi:10.1117/3.401208

27. Deng, C., Y. Li, Z. Zhang, and Z. Feng, "A hemispherical 3-D null steering antenna for circular polarization," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 803-806, 2015.
doi:10.1109/LAWP.2014.2382107

28. Sun, C., A. Hirata, T. Ohira, and N. C. Karmakar, "Fast beamforming of electronically steerable parasitic array radiator antennas: Theory and experiment," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1819-1832, Jul. 2004.
doi:10.1109/TAP.2004.831314

29. FEKO Suite 6.3 EM Software & Systems, Inc., USA www.feko.info, .

30. Shumakov, D. S., A. S. Beaverstone, D. Tajik, and N. K. Nikolova, "Experimental investigation of axial-null and axial-peak illumination schemes in microwave imaging," IEEE AP-S/URSI Int. Symp. on Antennas and Propag., Fajardo, Puerto Rico, Jun. 2016.

31. Wilson, R., "Propagation losses through common building materials: 2.4 GHz vs. 5 GHz,", E10589 Magis Networks, Inc., 1-27, Aug. 2002.

32. Jenks, C. H. J., "Dielectric pyramid antenna for GPR applications," 10th European Conf. on Antennas and Propag. (EuCAP), 1-3, Apr. 2016.
doi:10.1109/EuCAP.2016.7481679