Vol. 160

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Ultrabroadband Diode-Like Asymmetric Transmission and High-Efficiency Cross-Polarization Conversion Based on Composite Chiral Metamaterial

By Yongzhi Cheng, Jing-Cheng Zhao, Xuesong Mao, and Rongzhou Gong
Progress In Electromagnetics Research, Vol. 160, 89-101, 2017


In this paper, a three layer composite chiral metamaterial (CCMM) is proposed to achieve diode-like asymmetric transmission and high-efficiency cross-polarization conversion by 90° polarization rotation with ultrabroadband range simultaneously in microwave region, which was verified by simulation and experiment. This CCMM is composed of a disk-split-ring (DSR) structure sandwiched between two twisted sub-wavelength metal grating structures. The simulation agrees well with experiment in principle. The simulation results indicate that the incident y(x)-polarized wave propagation along the -z (+z) direction through the CCMM slab is still linearly polarized wave with high purity, but the polarization direction is rotated by ± 90°, and the polarization conversion ratio (PCR) is greater than 90% in the frequency range of 4.36-14.91 GHz. In addition, in the above frequency range, the asymmetric transmission coefficient (Δlin) and the total transmittance (Tx) for x-polarized wave propagation along the -z axis direction are both over 0.8. Finally, the above experiment and simulation results were further verified by the electric field distribution characteristics of the CCMM unit-cell structure. Our design will provide an important reference for the practical applications of the CCMM for polarization manipulation.


Yongzhi Cheng, Jing-Cheng Zhao, Xuesong Mao, and Rongzhou Gong, "Ultrabroadband Diode-Like Asymmetric Transmission and High-Efficiency Cross-Polarization Conversion Based on Composite Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 160, 89-101, 2017.


    1. Lindelli, V., et al., Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, London, 1994.

    2. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.

    3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407, 2009.

    4. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarize waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.

    5. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    6. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.

    7. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.

    8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

    9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593-1593, 2010.

    10. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, No. 16, 11802-11807, 2008.

    11. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.

    12. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.

    13. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.

    14. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, 053811, 2010.

    15. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.

    16. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.

    17. Cong, L., W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, "A perfect metamaterial polarization rotator," Appl. Phys. Lett., Vol. 103, No. 17, 171107, 2013.

    18. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, 1850-1858, 2013.

    19. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 21907-3, 2011.

    20. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twiststructure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.

    21. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.

    22. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.

    23. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.

    24. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Appl. Phys. A, Vol. 116, No. 2, 643-648, 2014.

    25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-infrared circular polarization and polarization filtering based on Fermat’s spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.

    26. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.

    27. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.

    28. Xu, K.-K., Z.-Y. Xiao, J.-Y. Tang, D.-J. Liu, and Z.-H. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.

    29. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

    30. Kang, M., J. Chen, H. Cui, Y. Li, and H. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, 8347, 2011.

    31. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, 14290-9, 2011.

    32. Novitsky, A. V., et al., "Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach," Phys. Rev. B, Vol. 86, No. 7, 075138, 2012.

    33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.

    34. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, 191905, 2013.

    35. Xu, Y., Q. Shi, Z. Zhu, and J. Shi, "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Opt. Express, Vol. 22, No. 21, 25679-25688, 2014.

    36. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.

    37. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys. A, Vol. 119, No. 1, 115-119, 2015.

    38. Wang, Y. H., J. Shao, J. Li, Z. Liu, J. Li, Z. G. Dong, and Y. Zhai, "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102, 2015.

    39. Liu, D., Z. Xiao, X. Ma, and Z. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.

    40. Wang, C., D. F. Tang, J. F. Dong, M. H. Li, and W. K. Pan, "Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band," Opt. Express, Vol. 25, No. 10, 11329-11339, 2017.

    41. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.

    42. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to fabry-perot-like cavity," Opt. Express, Vol. 22, 11707-11712, 2014.

    43. Xiao, Z.-Y., D.-J. Liu, X.-L. Ma, and Z.-H. Wang, "Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators," Opt. Express, Vol. 23, No. 6, 7053-7061, 2015.

    44. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Efficient dual-band asymmetric transmission of linearly polarized wave using a chiral metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.

    45. Shang, X.-J., X. Zhai, L.-L. Wang, M.-D. He, Q. Li, X. Luo, and H.-G. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.

    46. Wang, H.-B., X. Zhou, D.-F. Tang, and J.-F. Dong, "Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot-like resonators," Journal of Modern Optics, Vol. 7, 1-10, 2017.

    47. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, 1113-1120, 2016.

    48. Huang, X., B. Xiao, D. Yang, and H. Yang, "Ultra-broadband 90◦ polarization rotator based on bi-anisotropic metamaterial," Optics Communications, Vol. 338, 416-421, Mar. 1, 2015.

    49. Cheng, Y., W. Withayachumnankul, A. Upadhyay, H. Daniel, Y. Nie, R. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra-broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 19, 181111, 2014.

    50. Zhao, J. and Y. Cheng, "A high-efficiency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Appl. Phys. B, Vol. 122, No. 10, 255, 2016.

    51. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.

    52. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.

    53. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.