Vol. 161
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-03-10
Fast Low-Frequency Surface Integral Equation Solver Based on Hierarchical Matrix Algorithm
By
Progress In Electromagnetics Research, Vol. 161, 19-33, 2018
Abstract
A fast low-frequency surface integral equation solver based on hierarchical matrix algorithm is proposed. First, the augmented electric field integral equation (A-EFIE) formulation is introduced to eliminate the low-frequency breakdown of traditional EFIE. To deal with large-scale problems, the low-frequency multilevel fast multipole algorithm (LF-MLFMA) is employed to construct a hierarchical (H-) matrix representation of the A-EFIE system matrix. Moreover, a recompression method is developed to further compress the H-matrix generated by LF-MLFMA. The H-matrix-based triangular factorization algorithm can be performed with almost linear computational complexity and memory requirement, which produces a fast direct solver for multiple right-hand-side (RHS) problems, and a good preconditioner to accelerate the convergence rate of an iterative solver. Numerical examples demonstrate the effectiveness of the proposed method for the analysis of various low-frequency problems.
Citation
Ting Wan, Qi Dai, and Weng Cho Chew, "Fast Low-Frequency Surface Integral Equation Solver Based on Hierarchical Matrix Algorithm," Progress In Electromagnetics Research, Vol. 161, 19-33, 2018.
doi:10.2528/PIER17111701
References

1. Morita, N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Artech House, Boston, MA, 1990.

2. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan and Claypool, New York, NY, USA, 2007.

3. Qian, Z. G. and W. C. Chew, "A quantitative study of the low frequency breakdown of EFIE," Microw. Opt. Tech. Lett., Vol. 50, No. 5, 1159-1162, May 2008.
doi:10.1002/mop.23324

4. Wilton, D. R. and A. W. Glisson, "On improving the stability of the electric field integral equation at low frequencies," Proc. URSI Radio Sci. Meeting, 24, Los Angeles, CA, Jun. 1981.

5. Wu, W., A. W. Glisson, and D. Kajfez, "Study of two numerical solution procedures for the electric field integral equation at low frequency," Appl. Computat. Electromagn. Soc. J., Vol. 10, No. 3, 69-80, Nov. 1995.

6. Burton, M. and S. Kashyap, "A study of a recent, moment-method algorithm that is accurate to very low frequencies," Appl. Computat. Electromagn. Soc. J., Vol. 10, No. 3, 58-68, Nov. 1995.

7. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, 1635-1645, Oct. 2000.

8. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of EFIE," IEEE Trans. Antennas Propag., Vol. 47, 339-346, Feb. 1999.
doi:10.1109/8.761074

9. Lee, J. F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1855-1863, Aug. 2003.
doi:10.1109/TAP.2003.814736

10. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788

11. Stephanson, M. B. and J. F. Lee, "Preconditioner electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1274-1279, Apr. 2009.
doi:10.1109/TAP.2009.2016173

12. Yan, S., J. M. Jin, and Z. Nie, "EFIE analysis of low-frequency problems with loop-star decomposition and Calderon multiplicative preconditioner," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 857-867, Mar. 2010.
doi:10.1109/TAP.2009.2039336

13. Sun, S., Y. G. Liu, W. C. Chew, and Z. Ma, "Calderon multiplicative preconditioned EFIE with per-turbation method," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 247-255, Jan. 2013.
doi:10.1109/TAP.2012.2220099

14. Qian, Z. G. and W. C. Chew, "An augmented EFIE for high speed interconnect analysis," Micro. Opt. Technol. Lett., Vol. 50, No. 10, 2658-2662, Oct. 2008.
doi:10.1002/mop.23736

15. Qian, Z. G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Trans. Antennas Propag., Vol. 50, 3594-3601, Nov. 2009.

16. Xia, T., H. Gan, M. Wei, W. C. Chew, H. Braunisch, Z. Qian, K. Aygun, and A. Aydiner, "An integral equation modeling of lossy conductors with the enhanced augmented electric field integral equation," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4181-4190, Jun. 2017.
doi:10.1109/TAP.2017.2718587

17. Qian, Z. G. and W. C. Chew, "Enhanced A-EFIE with perturbation method," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3256-3264, Oct. 2010.
doi:10.1109/TAP.2010.2055795

18. Xia, T., H. Gan, M. Wei, W. C. Chew, H. Braunisch, Z. Qian, K. Aygun, and A. Aydiner, "An enhanced augmented electric field integral equation formulation for dielectric objects," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2339-2347, Jun. 2016.
doi:10.1109/TAP.2016.2537389

19. Meng, L. L., X. Y. Xiong, T. Xia, and L. J. Jiang, "The error control of mixed-form fast multipole algorithm based on the high-order multipole rotation," IEEE Antenn. Wireless Propag. Lett., Vol. 16, 1655-1658, Jan. 2017.
doi:10.1109/LAWP.2017.2660880

20. Wu, J. W., Z. G. Qian, J. E. Schutt-Aine, and W. C. Chew, "Fast solution of low-frequency complex problems over a frequency band using enhanced A-EFIE and FMM," Micro. Opt. Technol. Lett., Vol. 56, No. 9, 2153-2158, 2014.
doi:10.1002/mop.28528

21. Dai, Q. I., J. W. Wu, H. Gan, Q. S. Liu, W. C. Chew, and W. E. I. Sha, "Large-scale characteristic mode analysis with fast multipole algorithms," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2608-2616, Jul. 2016.
doi:10.1109/TAP.2016.2526083

22. Hackbusch, W. and B. Khoromaskij, "A Sparse Matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, 89-108, 1999.
doi:10.1007/s006070050015

23. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, No. 4, 295-344, Aug. 2003.
doi:10.1007/s00607-003-0019-1

24. Borm, S., L. Grasedyck, and W. Hackbusch, "Introduction to hierarchical matrices with applications," Engineering Analysis with Boundary Elements, No. 27, 405-422, 2003.
doi:10.1016/S0955-7997(02)00152-2

25. Bebendorf, M. and Leipzig, "Hierarchical LU decomposition-based preconditioners for BEM," Computing, Vol. 74, 225-247, 2005.
doi:10.1007/s00607-004-0099-6

26. Chai, W. and D. Jiao, "An H2-matrix-based integral-equation solver of reduced complexity and controlled accuracy for solving electrodynamic problems," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3147-3159, Oct. 2009.
doi:10.1109/TAP.2009.2028665

27. Chai, W. and D. Jiao, "A complexity-reduced H-matrix based direct integral equation solver with prescribed accuracy for large-scale electrodynamic anaysis," Proc. IEEE Int. Symp. Antennas Propag..
doi:10.1109/TAP.2009.2028665

28. Chai, W. and D. Jiao, "Direct matrix solution of linear complexity for surface integral-equationbased impedance extraction of complicated 3-D structures," Proceedings of the IEEE, Vol. 01, No. 2, 372-388, Feb. 2013.
doi:10.1109/JPROC.2012.2190577

29. Wan, T., Z. N. Jiang, and Y. J. Sheng, "Hierarchical matrix techniques based on matrix decomposition algorithm for the fast analysis of planar layered structures," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4132-4141, Nov. 2011.

30. Zhao, J. S. and W. C. Chew, "Three dimensional multilevel fast multipole algorithm from static to electrodynamic," Microw. Opt. Technol. Lett., Vol. 26, No. 1, 43-48, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<43::AID-MOP14>3.0.CO;2-8

31. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1635-1645, Oct. 2000.
doi:10.1109/8.899680