Vol. 164

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion

By Martina Bevacqua, Gennaro G. Bellizzi, Tommaso Isernia, and Lorenzo Crocco
Progress In Electromagnetics Research, Vol. 164, 1-15, 2019


Quantitative estimation of both conductivity and permittivity of biological tissues is essential in many biomedical applications, ranging from therapeutic treatments to safety assessment of medical devices and dosimetry. Typically, the electromagnetic field distribution inside the body is predicted based on available ex-vivo measured electrical properties. Unfortunately, these values may be quite different from the ones measured in-vivo and cannot account for the differences among individuals. As a result, their use can introduce significant errors affecting therapeutic treatments and dose estimation. To cope with this problem, in this paper a new approach for estimation of effective electrical properties of human tissues is introduced. The proposed strategy is based on the solution of an inverse scattering problem (by means of a contrast source inversion scheme) and the use of an effective representation of the unknowns based on spatial priors derived by magnetic resonance imaging or computed tomography. The approach is tested in controlled conditions against simulated single frequency data and realistic and anthropomorphic head and neck phantoms. Moreover, the inherent advantages have been assessed in the framework of hyperthermia treatment planning.


Martina Bevacqua, Gennaro G. Bellizzi, Tommaso Isernia, and Lorenzo Crocco, "A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion," Progress In Electromagnetics Research, Vol. 164, 1-15, 2019.


    1. Durney, C. H., "Electromagnetic dosimetry for models of humans and animals: A review of theoretical and numerical techniques," Proceedings of the IEEE, Vol. 68, No. 1, 33-40, 1980.

    2. De Greef, M., H. P. Kok, D. Correia, A. Bel, and J. Crezee, "Uncertainty in hyperthermia treatment planning: The need for robust system design," Phys. Med. Biol., Vol. 56, No. 11, 3233-3250, 2011.

    3. Bellizzi, G. G., L. Crocco G. M. Battaglia, and T. Isernia, "Multi-frequency constrained SAR focusing for patient specific hyperthermia treatment," IEEE JERM, Vol. 1, No. 2, 74-80, 2017.

    4. Bellizzi, G. G., D. A. M. Iero, L. Crocco, and T. Isernia, "3-D field intensity shaping: The scalar case," IEEE Ant. and Wir. Prop. Letters, 2018.

    5. Chow, E. Y., C. L. Yang, Y. Ouyang, A. L. Chlebowski, P. P. Irazoqui, and W. J. Chappell, "Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors," IEEE Trans. on Antennas and Propag., Vol. 59, No. 6, 2379-2387, 2011.

    6. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.

    7. Fortunati, V., R. F. Verhaart, F. van der Lijn, W. J. Niessen, J. F. Veenland, M. M. Paulides, and T. van Walsum, "Tissue segmentation of head and neck CT images for treatment planning: A multi-atlas approach combined with intensity modeling," Med. Phys., Vol. 7, No. 40, 2013.

    8. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth Jr., K.M. Rosenkranz, W. A. Wells, C. A Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, "The correlation of in-vivo and ex-vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience," Physiol. Meas., Vol. 30, No. 6, S121, 2009.

    9. O’Rourke, A. P., M. Lazebnik, J. M. Bertram, M. C. Converse, S. C. Hagness, J. G. Webster, and D. M. Mahvi, "Dielectric properties of human normal, malignant and cirrhotic liver tissue: in-vivo and ex-vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe," Phys. Med. Biol., Vol. 52, 4707-19, 2007.

    10. Salahuddin, S., A. La Gioia, M. A. Elahi, E. Porter, M. O’Halloran, and A. Shahzad, "Comparison of in-vivo and ex-vivo dielectric properties of biological tissues," International Conference on Electromagnetics in Advanced Applications, 582-585, 2017.

    11. Haemmerich, D., O. R. Ozkan, J. Z. Tsai, S. T. Staelin, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, "Changes in electrical resistivity of swine liver after occlusion and postmortem," Med. Biol. Eng. Comput., No. 40, 29-33, 2002.

    12. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," International Journal of Biomedical Imaging, Vol. 2012, Article ID 649612, 9 pages, 2012.

    13. Gabriel, C. and A. Peyman, Chapter 69 - Dielectric Properties of Biological Tissues; Variation with Age, Editors, Jeffrey L. Ram, P. Michael Conn, Conn's Handbook of Models for Human Aging, 2nd Edition, 939–952, Academic Press, 2018.

    14. Haacke, E. M., L. S. Petropoulos, E. W. Nilges, and D. H. Wu, "Extraction of conductivity and permittivity using magnetic resonance imaging," Phys. Med. Biol., Vol. 36, 723-34, 1991.

    15. Katscher, U. and C. A. Berg, "Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications," NMR in Biomedicine, 2017.

    16. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1998.

    17. Bertero, M. and P. Boccacci, "Introduction to inverse problems in imaging," Institute of Physics, Bristol, UK, 1998.

    18. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.

    19. Bai, F., A. Franchois, and A. Pizurica, "3D microwave tomography with huber regularization applied to realistic numerical breast phantoms," Progress In Electromagnetics Research, Vol. 155, 75-91, 2016.

    20. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.

    21. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. on Geosci. and Remote Sens., Vol. 39, No. 7, 1596-1607, Jul. 2001.

    22. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.

    23. Golnabi, A., et al., "3D microwave tomography of the breast using prior anatomical information," Med. Phys., Vol. 43, No. 4, 1933-1944, 2016.

    24. Meaney, P., et al., "Integration of microwave tomography with magnetic resonance for improved breast imaging," Med. Phys., Vol. 40, No. 10, 2013.

    25. Neira, L. M., et al., "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 6002-6014, 2017.

    26. Rahimov, A., A. Litman, and G. Ferrand, "MRI-based electric properties tomography with a quasi-Newton approach," Inverse Problems, Vol. 33, No. 10, 2017.

    27. Rijnen, Z., P. Togni, R. Roskam, S. G. Van De Geer, R. H. Goossens, and M. M. Paulides, "Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies," Int. J. Hyperthermia, Vol. 31, No. 8, 823-830, 2017.

    28. Paulides, M. M., R. M. C. Mestrom, G. Salim, B. B. Adela, W. C. M. Numan, T. Drizdal, D. T. B. Yeo, and A. B. Smolders, "A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators," Phys. Med. Biol., Vol. 62, No. 5, 1831-1847, 2017.

    29. Gellermann, J., W. Wlodarczyk, A. Feussner, H. F¨ahling, J. Nadobny, B. Hildebrandt, R. Felix, and P. Wust, "Methods end potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system," Int. J. Hyperthermia, Vol. 21, No. 6, 497-513, 2005.

    30. Iero, D. A., L. Crocco, and T. Isernia, "Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 814-821, 2014.

    31. Li, M., O. Semerci, and A. Abubakar, "A contrast source inversion method in the wavelet domain," Inverse Problems, Vol. 29, No. 2, 1-19, 2013.

    32. Bevacqua, M., L. Crocco, and T. Isernia, "Non-linear inverse scattering via sparsity regularized contrast source inversion," IEEE Transactions on Computational Imaging, Vol. 3, No. 2, 296-304, Jun. 2017.

    33. Palmeri, R., M. T. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave Imaging via Distorted Iterated Virtual Experiments," IEEE Trans. on Antennas and Propag., Vol. 65, No. 2, 829-838, 2017.

    34. Scapaticci, R., I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3717-3726, 2012.

    35. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propag., Vol. 29, No. 2, 232-238, Mar. 1981.

    36. Bucci, O. M., I. Catapano, L. Crocco, and T. Isernia, "Synthesis of new variable dielectric profile antennas via inverse scattering techniques: A feasibility study," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1287-1297, Apr. 2005.

    37. Datta, N. R., S. Rogers, S. G. Ordonez, E. Puric, and S. Bodis, "Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis," Int. J. Hyperthermia, Vol. 32, No. 1, 31-40, 2016.

    38. Zubal, I., C. Harrell, E. Smith, Z. Rattner, G. Gindi, and P. Hoffer, "Computerized three-dimensional segmented human anatomy," Med. Phys., Vol. 21, No. 2, 299-302, 1994.

    39. Hasgall, P. A., F. D. Gennaro, C. Baumgartner, E. Neufeld, M. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, "IT’IS Database for thermal and electromagnetic parameters of biological tissues,", Version 3.0, 2015.

    40. Andreuccetti, D., R. Fossi, and C. Petrucci, "An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz, IFAC-CNR, Florence (Italy) - Based on data published by C. Gabriel et al. in 1996,", Website at http://niremf.ifac.cnr.it/tissprop/, 1997.

    41. Tournier, P. H., et al., "Numerical modeling and high-speed parallel computing: New perspectives on tomographic microwave imaging for brain stroke detection and monitoring," IEEE Ant. Prop. Magazine, Vol. 59, No. 5, 98-110, Oct. 2017.

    42. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable nformation and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.

    43. Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, "Hyperthermia in combined treatment of cancer," The Lancet Oncology, Vol. 3, No. 8, 487-497, 2002.

    44. Cappiello, G., B. Mc Ginley, M. A. Elahi, T. Drizdal, M. M. Paulides, M. Glavin, M. O’Halloran, and E. Jones, "Differential evolution optimization of the sar distribution for head and neck hyperthermia," IEEE Trans. Bio. Eng., Vol. 64, 1875-1885, Aug. 2017.

    45. Canters, R. A. M., P. Wust, J. F. Bakker, and G. C. Van Rhoon, "A literature survey on indicators for characterization and optimization of SAR distributions in deep hyperthermia, a plea for standardization," Int. J. Hyperthermia, Vol. 25, 593-608, Nov. 2009.

    46. Catapano, I., L. Crocco, and T. Isernia, "A simple two-dimensional inversion technique for imaging homogeneous targets in stratified media," Radio Sci., Vol. 39, 2004.