Vol. 164

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-28

Efficient Broadband Evaluations of Lattice Green's Functions via Imaginary Wavenumber Components Extractions

By Shurun Tan and Leung Tsang
Progress In Electromagnetics Research, Vol. 164, 63-74, 2019
doi:10.2528/PIER18102001

Abstract

A novel and systematic method is developed to evaluate periodic Green's functions on empty lattices through extractions of an imaginary wavenumber component of the lattice Green's function and its associated derivatives. We consider cases of volumetric periodicity where the dimensionality of the periodicity has the same dimensionality as the physical problem. This includes one-dimensional (1D) problem with 1D periodicity, two-dimensional (2D) problem with 2D periodicity, and three-dimensional (3D) problem with 3D periodicity, respectively. The remainder of the Green's function is put in spectral series with high-order power-law convergence rates, while the extracted imaginary wavenumber parts are put in spatial series with super-fast and close-to exponential convergence rate. The formulation is free of transcendental functions and thus simple in implementation. It is especially efficient for broadband evaluations of the Green's function as the spatial series are defined on fixed wavenumbers that take small CPU to compute, and the spectral series have simple and separable wavenumber dependences. Keeping only a few terms in both the spatial and spectral series, results of the lattice Green's function are in good agreement with benchmark solutions in 1D, 2D, and 3D, respectively, demonstrating the high accuracy and computational efficiency of the proposed method. The proposed method can be readily generalized to deal with Green's functions including arbitrary periodic scatterers.

Citation


Shurun Tan and Leung Tsang, "Efficient Broadband Evaluations of Lattice Green's Functions via Imaginary Wavenumber Components Extractions," Progress In Electromagnetics Research, Vol. 164, 63-74, 2019.
doi:10.2528/PIER18102001
http://www.jpier.org/PIER/pier.php?paper=18102001

References


    1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    4. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
    doi:10.2307/j.ctvcm4gz9

    5. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, No. 11, 114301, 2015.
    doi:10.1103/PhysRevLett.114.114301

    6. Haldane, F. D. M., "Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ``parity anomaly''," Phys. Rev. Lett., Vol. 61, No. 18, 2015-2018, 1988.
    doi:10.1103/PhysRevLett.61.2015

    7. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green’s function in a onedimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
    doi:10.2528/PIER18071802

    8. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
    doi:10.1103/PhysRevB.48.7767

    9. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
    doi:10.2528/PIER15082901

    10. Kohn, W. and N. Rostoker, "Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium," Physical Review, Vol. 94, 1111-1120, 1954.
    doi:10.1103/PhysRev.94.1111

    11. Silveirinha, M. and C. A. Fernandes, "A new method with exponential convergence to evaluate the periodic Green’s function," Proc. IEEE APS/URSI Symp., Vol. 2, 805-808, Columbus, OH, Jun. 2003.

    12. Ewald, P. P., "Die berechnug optischer und elekrostatischen gitterpotential," Ann. Phys., Vol. 64, 253-268, 1921.
    doi:10.1002/andp.19213690304

    13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numericalevaluation of the Green’s functionfor the Helmholtzoperator on periodic structures," J. Comp. Phys., Vol. 63, 222-235, 1986.
    doi:10.1016/0021-9991(86)90093-8

    14. Mathis, A. W. and A. F. Peterson, "A comparisonof acceleration procedures for the two-dimensional periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 44, 567-571, Apr. 1996.
    doi:10.1109/8.489309

    15. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Numerical Simulations, Wiley-Interscience, New York, 2001.
    doi:10.1002/0471224308

    16. Tan, S., Multiple volume scattering in random media and periodic structures with applications in microwave remote sensing and wave functional materials, Ph.D. Thesis, University of Michigan, https://deepblue.lib.umich.edu/handle/2027.42/137141, 2016.

    17. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
    doi:10.1364/OE.24.000945

    18. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
    doi:10.1364/JOSAB.34.001450

    19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
    doi:10.1364/OE.8.000173

    20. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
    doi:10.1364/OL.42.004667

    21. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA, 2018.

    22. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, 1990.
    doi:10.1109/8.60985

    23. Ivanishin, M. M. and S. P. Skobelev, "A modification of the Kummer’s method for efficient computation of the Green’s function for doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2794-2798, 2009.
    doi:10.1109/TAP.2009.2027188

    24. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Soviet Physics, Vol. 2, No. 1, 73-83, 1956.

    25. Simpson, W. M. and U. Leonhardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific Publishing Company, 2015.
    doi:10.1142/9383

    26. Tsang, L., K. H. Ding, T. H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 16-25, Feb. 2018.
    doi:10.1109/TEMC.2017.2727958