Vol. 164

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Broadband Plasmonic Circuitry Enabled by Channel Domino Spoof Plasmons

By Liangliang Liu, Li Ran, Huadong Guo, Xinlei Chen, and Zhuo Li
Progress In Electromagnetics Research, Vol. 164, 109-118, 2019


Building of compact plasmonic integrated circuits based on domino spoof plasmons (DSPs) is an important requirement and still a challenge. In this work, we report the first demonstration of two kinds of channel domino plasmonic circuitries, which consist of an easy-to-manufacture periodic chain of metallic box-shaped elements inside two finite metallic plates. We reveal that only the channel DSPs itself rather than the hybrid TE10 and DSPs modes is supported in the part of the channel domino plasmonic waveguide with or without the metallic vias on both sides. Two channel domino plasmonic filters based on the efficient transition structures are designed, and the simulated S-parameters and near electric field distributions show excellent transmission performance in broadband. Utilizing the lateral insensitive property of these two channel DSPs, two kinds of broadband plasmonic power dividers/combiners are firstly implemented. Excellent transmission performance validates our optimizations and indicates that the proposed scheme can be easily extended to other bands. This work provides a new route for construction of deep-subwavelength DSP devices in application of high integration of microwave and terahertz circuits.


Liangliang Liu, Li Ran, Huadong Guo, Xinlei Chen, and Zhuo Li, "Broadband Plasmonic Circuitry Enabled by Channel Domino Spoof Plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.


    1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.

    2. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

    3. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys., Vol. 70, No. 1, 1, 2006.

    4. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.

    5. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A, Pure Appl. Opt., Vol. 7, No. 2, S97-S101, 2005.

    6. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.

    7. Williams, C. R., S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photon., Vol. 2, No. 3, 175-179, 2008.

    8. Liu, L. L., Z. Li, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," J. Appl. Phys., Vol. 116, No. 1, 013501, 2014.

    9. Wu, J. J., "Subwavelength microwave guiding by periodically corrugated strip line," Progress In Electromagnetics Research, Vol. 104, 113-123, 2010.

    10. Liao, Z., J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, "Broadband transition between microstrip line and conformal surface plasmon waveguide," J. Phys. D. Appl. Phys., Vol. 47, No. 31, 315103, 2014.

    11. Ma, H. F., X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, "Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser Photon. Rev., Vol. 8, No. 1, 146-151, 2014.

    12. Liu, L. L., Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, C. Q., and Gu, "Dualband trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Appl. Phys. Lett., Vol. 107, No. 20, 201602, 2015.

    13. Cui, T. J., "Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves," J. opt., Vol. 19, No. 4, 2017.

    14. Cui, T. J., "Microwave metamaterials," National Sci. Rev., Vol. 5, No. 2, 134-136, 2018.

    15. Zhou, Y. J. and B. J. Yang, "Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves," Appl. Opt., Vol. 54, No. 14, 4529-4533, 2015.

    16. Zhang, H. C., Y. F. Fan, J. Guo, X. J. Fu, and T. J. Cui, "Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials," ACS Photon., Vol. 3, No. 1, 139-146, 2016.

    17. Liu, L. L., L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, and Y. Luo, "Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials," Adv. Sci., 1800661, 2018.

    18. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J.Garcia-Vidal, L. Martin- Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, 754-764, 2010.

    19. Nesterov, M. L., D. Martin-Cano, A. I. Fernandez-Dominguez, E.Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Geometrically induced modification of surface plasmons in the optical and telecom regimes," Opt. Lett., Vol. 35, No. 3, 517-520, 2010.

    20. Zhao, W. S., O. M. Eldaiki, R. X. Yang, and Z. L. Lu, "Deep subwavelength waveguiding and focusing based on designer surface plasmons," Opt. Express, Vol. 18, No. 20, 21498-21503, 2010.

    21. Brock, E. M. G., E. Hendry, and A. P. Hibbins, "Subwavelength lateral confinement of microwave surface waves," Appl. Phys. Lett., Vol. 99, 051108, 2011.

    22. Cano, D. M., O. Q. Teruel, E. Moreno, L. Martin-Moreno, and F. J.Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, 2011.

    23. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high frequency circuit," Opt. Express, Vol. 19, 189-198, 2011.

    24. Boroujeni, M. A., K. Altmann, B. Scherger, C., Jansen, M. Shahabadi, and M. Koch, "Terahertz parallel-plate ladder waveguide with highly confined guided modes," IEEE Trans. Terahertz Science and Tech., Vol. 3, No. 1, 87-95, 2013.

    25. Kumar, G., S. S. Li, M. M. Jadidi, and T. E. Murphy, "Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars," New J. Phys., Vol. 15, 085031, 2013.

    26. Wu, J. J., H. E. Lin, T. J. Yang, Y.-H. Kao, H.-L. Chiueh, and D. J. Hou, "Open waveguide based on low frequency spoof surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 5, 58-62, 2013.

    27. Teruel, O. Q., "Controlled radiation from dielectric slabs over spoof surface plasmon waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013.

    28. Woolf, D., M. A. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, No. 3, 517-520, 2014.

    29. Liu, L. L., Z. Li, B. Z. Xu, J. Yan, P. P. Ning, and C. Q. Gu, "A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band," 2014 3rd IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 974-977, July 2014.

    30. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, C. Chen, P. P. Ning, J. Yan, and X. Y. Chen, "High-efficiency transition between rectangular waveguide and domino plasmonic waveguide," AIP Adv., Vol. 5, No. 2, 027105, 2015.

    31. Liu, L. L., Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J.Zhou, Q. Qing, P. Shum, and Y. Luo, "Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 65, No. 6, 2008-2018, 2017.

    32. Zhang, Q., H. C. Zhang, H. Wu, and T. J. Cui, "A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters," Sci. Rep., Vol. 5, 16531, 2015.

    33. Guan, D. F., P. You, Q. Zhang, Z. B. Yang, H. W. Liu, and S. W. Yong, "Slow-wave half-mode substrate integrated waveguide using spoof surface plasmon polariton structure," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 6, 2946-2952, 2018.

    34. Chen, P., L. P. Li, K. Yang, and Q. Chen, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide broadband bandpass filter with wide out-of-band rejection," IEEE Micro. and Wireless Components Lett., Vol. 28, No. 11, 984-986, 2018.

    35. Guan, D. F., P. You, Q. Zhang, K. Xiao, and S. W. Yong, "Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter," IEEE Trans. Micro. Theory Techn., Vol. 65, No. 12, 4925-4932, 2017.

    36. Wu, Q. H., G. R. Ding, J. L. Wang, and Y. D. Yao, "Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing," IEEE Trans. on Wireless Commun., Vol. 12, No. 2, 516-526, 2013.

    37. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, F. Song, and T. A.Tsiftsis, "Cellular-basestation-assisted device-to-device communications in TV white space," IEEE J. on Selected Areas in Commun., Vol. 34, No. 1, 107-121, 2016.

    38. Ding, G. R., J. L. Wang, Q. H. Wu, Y. D. Yao, R. P. Li, H. G., Zhang, and Y. L. Zou, "On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing," IEEE Commun. Magazine, Vol. 53, No. 7, 178-183, 2015.

    39. Chen, X. P. and K. Wu, "Low-loss ultra-wideband transition between conductor-backed coplanar waveguide and substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 349-352, 2009.

    40. Taringou, F. and J. Bornemann, "New substrate-integrated to coplanar waveguide transition," Proceedings of the 41st European Microwave Conference, 428-431, Manchester, UK, October 2011.

    41. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 53, No. 1, 66-73, 2005.