Vol. 170
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-02-02
High Efficiency Multi-Functional All-Optical Logic Gates Based on MIM Plasmonic Waveguide Structure with the Kerr-Type Nonlinear Nano-Ring Resonators
By
Progress In Electromagnetics Research, Vol. 170, 79-95, 2021
Abstract
In this paper, high efficiency multi-functional all-optical logic gates based on a metal-insulator-metal (MIM) plasmonic waveguide structure with Kerr-type nonlinear nano-ring resonators are proposed. The proposed structure consists of three straight input ports, eight nano-ring resonators filled with the Kerr-type nonlinear medium, and one straight output port. By fixing the input signal power and properly changing the control power, it can be used to design high efficiency multi-functional all-optical logic gates. The numerical results show that the proposed Kerr-type nonlinear plasmonic waveguide structures could really function as all-optical XOR/NXOR, AND/NAND, and OR/NOR logic gates in the optical communication spectral region. The transmission efficiency of the high logic state is higher than 95%, and that of the low logic state is about 0% at the wavelength 1310nm. The performance of the proposed logic gates was analyzed and simulated by the finite element method (FEM).
Citation
Yaw-Dong Wu, "High Efficiency Multi-Functional All-Optical Logic Gates Based on MIM Plasmonic Waveguide Structure with the Kerr-Type Nonlinear Nano-Ring Resonators," Progress In Electromagnetics Research, Vol. 170, 79-95, 2021.
doi:10.2528/PIER20082001
References

1. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, Germany, 1988.
doi:10.1007/BFb0048317

2. Barnes, W. L., A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

3. Takahara, J., Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett., Vol. 22, 475-477, 1997.
doi:10.1364/OL.22.000475

4. Veronis, G., Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, "Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale," Chin. Opt. Lett., Vol. 7, 302-308, 2009.
doi:10.3788/COL20090704.0302

5. Han, Z., E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol., Vol. 19, 91-93, 2007.
doi:10.1109/LPT.2006.889036

6. Park, J., H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express, Vol. 16, 413-425, 2008.
doi:10.1364/OE.16.000413

7. Hosseini, A., H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express, Vol. 16, 1475-1480, 2008.
doi:10.1364/OE.16.001475

8. Hosseini, A. and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express, Vol. 14, 11318-11323, 2006.
doi:10.1364/OE.14.011318

9. Pu, M., N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, "Directional coupler and nonlinear Mach-Zehnder interferometer based on metal insulator-metal plasmonic waveguide," Opt. Express, Vol. 18, 21030-21037, 2010.
doi:10.1364/OE.18.021030

10. Hosseini, A. and Y. Massoud, "A rectangular metal-insulator-metal based nanoscale plasmonic resonator," IEEE-NANO, 81-84, 2007.

11. Anglin, K., D. C. Adams, T. Ribaudo, and D. Wasserman, "Toothed mid-infrared metal-insulator-metal waveguides," CLEO, CTuS4, 2011.

12. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27-35, 2014.
doi:10.1016/j.optcom.2013.09.055

13. Chen, Z. Q., J. Chen, Y. D. Li, D. Pan, W. Q. Lu, Z. Q. Hao, J. J. Xu, and Q. Sun, "Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides," IEEE Photonics Technology Letters, Vol. 24, 1366-1368, 2012.
doi:10.1109/LPT.2012.2202283

14. Dolatabady, A. and N. Granpayeh, "All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators," J. O. S. K., Vol. 16, 432, 2012.

15. Wu, Y. D., "High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides," OSA/IEEE J. of Lightwave Techn., Vol. 32, 4242, 2014.
doi:10.1109/JLT.2014.2378158

16. Pramono, Y. H. and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.
doi:10.1142/S0218863501000553

17. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Opt. Express, Vol. 14, 4005, 2006.
doi:10.1364/OE.14.004005

18. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 15, 9883, 2007.
doi:10.1364/OE.15.009883

19. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.
doi:10.1140/epjd/e2010-00124-6

20. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.
doi:10.1016/j.optcom.2010.09.001

21. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a Three-core Nonlinear Directional Coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.
doi:10.1142/S0218863512500385

22. Karimi, S., M. Ebnali-Heidari, and F. Forootan, "Design and modelling of a 1 × n all-optical nonlinear Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504

23. Liu, W.-J. and M. Lei, "All-optical switches using solitons within nonlinear fibers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.
doi:10.1080/09205071.2013.839961

24. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013.

25. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005.

26. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.
doi:10.1109/LPT.2006.875318

27. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 16, 248, 2008.
doi:10.1364/OE.16.000248

28. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.
doi:10.4236/jis.2013.43020

29. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.
doi:10.12988/aap.2013.13003

30. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27, 2014.

31. Chen, Z., J. Chen, Y. Li, D. Pen, W. Lu, Z. Hao, J. Xu, and Q. Sun, "Simulation of nanoscale multifuntional interferometric logic gates based on coupled metal gap waveguides," IEEE Photon. Technol. Lett., Vol. 24, 1366, 2012.

32. Dolatabady, A. and N. Granpayeh, "All optical logic gate based on two dimensional plasmonic waveguides with nanodisk resonators," J. of the Opt. Soci. of Korea, Vol. 16, 432, 2012.

33. Wang, L., L. Yan, Y. Guo, K.Wen, W. Pan, and B. Luo, "Optical quasi logic based on polarization-dependent four-wave mixing in subwavelength metallic waveguides," Opt. Express, Vol. 21, 14442, 2013.

34. Nozhat, N. and N. Granpayeh, "All-optical logic gates based on nonlinear plasmonic ring resonators," Appl. Opt., Vol. 54, 7944, 2015.

35. Wen, J., J. Chen, K. Wang, B. Dai, Y. Hung, and D. Zhang, "Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides," IEEE Photon. J., Vol. 8, 4801209, 2016.

36. Yc, Y., Y. Xic, Y. Liu, S. Wang, J. Zhang, and Y. Liu, "Design of a compact logic device based on plasmonic-induced transparency," IEEE Photon. J., Vol. 29, 647, 2016.

37. Abdulnabi, S. H. and M. N. Abbas, "All-optical logic gates based on nanoring insulator-metalinsulator plasmonic waveguides at optical communications band," Journal of Nanophotonics, Vol. 13, No. 1, 16009, 2019.

38. Abdulnabi, S. H. and M. N. Abbas, "Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides," Photonics, Vol. 6, No. 1, 30, 2019.

39. Shekhar, P., A. Kumar, A. Ahmad, and M. Srivastava, "All optical OR/NOR logic gate using the micro-ring resonator based switching activity," International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2019.

40. Abbas, M. N. and S. H. Abdulnabi, "Plasmonic reversible logic gates," Journal of Nanophotonics, Vol. 14, No. 01, 1, 2019.

41. Noor, S. L., K. Dens, P. Reynaert, F. Catthoor, D. Lin, P. V. Dorpe, and A. Naeemi, "Modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic gates," OSA/IEEE J. of Lightwave Technol., Vol. 38, 5092, 2020.

42. Fakhruldeen, H. F. and T. S. Mansour, "Design and simulation of plasmonic NOT gate based on insulator-metal-insulator (IMI) waveguides," Advanced Electromagnetics, Vol. 9, 91, 2020.

43. Sederberg, S., V. Van, and A. Y. Elezzabi, "Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform," Appl. Phys. Lett., Vol. 96, 121101, 2010.

44. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012.

45. Kwon, M. S., J. S. Shin, S. Y. Shin, and W. G. Lee, "Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal," Opt. Express, Vol. 20, 21875-21887, 2012.

46. Sullivan, D., D. Borup, and O. Gandhi, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," IEEE Trans. Biomed. Eng., Vol. 34, 148, 1987.

47. Adhidjaja, J. and G. Horhmann, "A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body," Geophysics J. Int., Vol. 98, 233, 1989.

48. Piket-May, M. and A. Taflove, "Electrodynamics of visible-light interactions with the vertebrate retinal rod," Opt. Lett., Vol. 18, 568, 1993.

49. Caorsi, S., A. Massa, and M. Pastorino, "Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach," Microwave Opt. Technol. Lett., Vol. 7, 788, 1994.

50. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics, Vol. 6, 753, 2011.