Vol. 170
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-05-11
An Efficient Method for Dimensioning Magnetic Shielding for an Induction Electric Vehicle Charging System
By
Progress In Electromagnetics Research, Vol. 170, 153-167, 2021
Abstract
Recently, the number of electric vehicles (EVs) is increasing due to the declining of oil resources and rising of greenhouse gas emission. However, EVs have not received wide acceptance by consumers due to the limitations of the stored energy and charging problems in batteries. The dynamic or in motion charging solution becomes a suitable choice to solve the battery related issues. Many researchers and vehicle manufacturers are working to develop an efficient charging system for EVs which is based on magnetic emissions to transfer power. These emissions must be evaluated and compared to limits specified by standards (in and outside the vehicle) in order to not cause harmful effects on their environment (humans, pets, electronic devices...). This paper presents an efficient method for modeling electromagnetic emission in near field and sizing a magnetic shield for a wireless power transfer (WPT) system for EVs. A model based on elementary magnetic dipoles is developed in order to obtain the same radiation as the real WPT coil. This model is used to size a magnetic shield which will be placed under the vehicle to protect human body from magnetic emissions. The obtained shielding plate allows to respect the standards of magnetic emission by bringing a decrease of 43 dB to the levels of magnetic fields. This approach is experimentally validated.
Citation
Karim Kadem, Fethi Benyoubi, Mohamed Bensetti, Yann Le Bihan, Eric Labouré, and Mustapha Debbou, "An Efficient Method for Dimensioning Magnetic Shielding for an Induction Electric Vehicle Charging System," Progress In Electromagnetics Research, Vol. 170, 153-167, 2021.
doi:10.2528/PIER21031903
References

1. Coca, E., Wireless Power Transfer Fundamentals and Technologies, 2016.
doi:10.5772/61488

2. Caillierez, A., P. A. Gori, D. Sadarnac, A. Jaafari, and S. Loudot, "2.4 kW prototype of on-road Wireless Power Transfer: Modelling concepts and practical implementation," 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), No. 1, 1-9, 2015.

3. Ruffo, R., V. Cirimele, M. Diana, M. Khalilian, A. La Ganga, and P. Guglielmi, "Sensorless control of the charging process of a dynamic inductive power transfer system with an interleaved nine-phase boost converter," IEEE Trans. Ind. Electron., Vol. 65, No. 10, 7630-7639, 2018.
doi:10.1109/TIE.2018.2803719

4. Caillierez, A., "Etude et mise en oeuvre du transfert de l’energie electrique par induction: Application a la route electrique pour vehicules en mouvement," These de doctorat, Universite PARIS-SACLAY, 2016.

5. Boys, J. T., G. A. Covic, and A. W. Green, "Stability and control of inductively coupled power transfer systems," IEE Proc. — Electr. Power Appl., Vol. 147, No. 1, 37, 2000.
doi:10.1049/ip-epa:20000017

6. Covic, G. A., J. T. Boys, M. Budhia, and C. Huang, "Electric vehicles — Personal transportation for the future," World Electr. Veh. J., Vol. 4, 693-704, 2010.
doi:10.3390/wevj4040693

7. Budhia, M., G. Covic, and J. Boys, "A new IPT magnetic coupler for electric vehicle charging systems," IECON Proc. (Industrial Electron. Conf., 2487-2492, 2010.

8. Kadem, K., F. Cheriet, E. Laboure, M. Bensetti, Y. Le Bihan, and M. Debbou, "Sensorless vehicle detection for dynamic wireless power transfer," 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe, 1-6, 2019.

9. SAE J2954 "Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology," SAE Int., 2017.

10. Kadem, K., Y. Le Bihan, M. Bensetti, E. Laboure, A. DIET, and M. Debbou, "Reduction of the shielding effect on the coupling factor of an EV WPT system," 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2019, 2019.

11. IEC 61980-1 Electric Vehicle Wireless Power Transfer (WPT) Systems – Part 1: General Requirements, 2019..

12. ISO 19363 "Electrically propelled road vehicles — Magnetic field wireless power transfer — Safety and interoperability requirements,", 2018.

13. IEC 63243 "Interoperability and safety of dynamic Wireless Power Transfer (WPT) for electric vehicles,", 2021.

14. Matthes, R., J. H. Bernhardt, and A. F. McKinlay, International Commission on Non-Ionizing Radiation Protection, Vol. 74, No. 4 Guidelines on Limiting Exposure to Non-ionizing Radiation?: A Reference Book Based on the Guidelines on Limiting Exposure to Non, 1999.

15. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210

16. ICNIRP "Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz) — International commission on non-ionizing radiation protection—," Health Phys., Vol. 99, No. 6, 818-836, 2010.
doi:10.1097/HP.0b013e3181f06c86

17. Benyoubi, F., "Caracterisation en champ proche des emissions rayonners de boitiers de blindage electromagnetique," These de doctorat, Universite de Nantes, 2018.

18. Benyoubi, F., et al. "An efficient method for modeling the magnetic field emissions of power electronic equipment from magnetic near field measurements," IEEE Trans. Electromagn. Compat., Vol. 59, No. 2, 609-617, 2017.
doi:10.1109/TEMC.2016.2643167

19. J. R. Regue, M. Ribo, J. M. Garrell, and A. Martın, "A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization," IEEE Trans. Electromagn. Compat., Vol. 43, No. 4, 520-530, 2001.
doi:10.1109/15.974631

20. Abdelli, W., A. Frikha, X. Mininger, L. Pichon, and H. Trabelsi, "Prediction of radiation from shielding enclosures using equivalent 3-D high-frequency models," IEEE Trans. Magn., Vol. 51, No. 3, 1-4, 2015.
doi:10.1109/TMAG.2014.2362575

21. Tong, X., D. W. P. Thomas, K. Biwojno, A. Nothofer, P. Sewell, and C. Christopoulos, "Modeling electromagnetic emissions from PCBs in free space using equivalent dipoles," Eur. Microw. Week, No. 10, 280-283, 2009.

22. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part I — The FSV method," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 460-467, 2006.
doi:10.1109/TEMC.2006.879360

23. Rajamani, V., C. F. Bunting, A. Orlandi, and A. Duffy, "Introduction to Feature Selective Validation (FSV)," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1, No. 1, 601-604, 2006.

24. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part II — Assessment of FSV performance," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 460-467, 2006.
doi:10.1109/TEMC.2006.879360

25. Basyigit, I. B. and M. F. Caglar, "Investigation of the magnetic shielding parameters of rectangular enclosures investigation of the magnetic shielding parameters of rectangular enclosures with apertures at 0 to 3 GHz," Electromagnetics, Vol. 36, No. 7, 434-446, 2016.
doi:10.1080/02726343.2016.1220907

26. Basyigit, I. B., M. F. Caglar, and S. Helhel, "Magnetic shielding effectiveness and simulation analysis of metalic enclosures with apertures," 2015 9th Int. Conf. Electr. Electron. Eng. (ELECO), Bursa, Turkey, 328-331, 2015.
doi:10.1109/ELECO.2015.7394636

27. Feliziani, M. and S. Cruciani, "Mitigation of the magnetic field generated by a Wireless Power Transfer (WPT) system without reducing the WPT efficiency," Int. Symp. Electromagn. Compat. (EMC Eur., 610-615, 2013.

28. Frikha, A., M. Bensetti, L. Pichon, F. Lafon, F. Duval, and N. Benjelloun, "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Trans. Electromagn. Compat., Vol. 57, No. 6, 1481-1490, 2015.
doi:10.1109/TEMC.2015.2463677

29. Araneo, R. and S. Celozzi, "Exact solution of the low-frequency coplanar loops shielding configuration," IEE Proc. — Sci. Meas. Technol., Vol. 149, No. 1, 37-44, 2002.
doi:10.1049/ip-smt:20020164