Vol. 172
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-22
Tunable High-q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)
By
Progress In Electromagnetics Research, Vol. 172, 23-32, 2021
Abstract
Micro-nano opto-electronic devices are demanded to be highly efficient and capable of multiple working wavelengths in several light-matter interaction applications, which is a challenge to surface plasmonics owing to the relatively higher intrinsic loss and larger dispersion. To cross the barriers, a plasmonic metasurface combining both high Q-factors (highest Q > 800) and multiple resonant wavelengths is proposed by arranging step-staged pyramid units in lattice modes. Different numerical relations for nonlinear frequency conversions have been constructed because of its strong tunability. Also, characteristics of high radiation efficiency (> 50%) and largelocalized optical density of state (> 104) have been proved through the numerical simulation. Such tunable high-Q metasurface can be implemented to quantum nonlinear process and enable the strong light-matter interaction devices into reality.
Citation
Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian, "Tunable High-q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)," Progress In Electromagnetics Research, Vol. 172, 23-32, 2021.
doi:10.2528/PIER21112006
References

1. Fernández-Domínguez, A., A., F. Garcia-Vidal, and L. Martín-Moreno, "Unrelenting plasmons," Nat. Photonics, Vol. 11, 8-10, 2017.
doi:10.1038/nphoton.2016.258

2. De Bruijn, H. E., R. P. H. Kooyman, and J. Greve, "Choice of metal and wavelength for surface-plasmon resonance sensors: Some considerations," Appl. Opt., Vol. 31, 440-442, 1992.
doi:10.1364/AO.31.0440_1

3. Arbabi, A., et al. "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nat. Commun., Vol. 7, 13682, 2016.
doi:10.1038/ncomms13682

4. Li, L., et al. "Metalens-array-based high-dimensional and multiphoton quantum source," Science, Vol. 368, 1487-1490, 2020.
doi:10.1126/science.aba9779

5. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839

6. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y

7. Liu, H. and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, 728-731, 2008.
doi:10.1038/nature06762

8. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B, Vol. 84, 205428, 2011.
doi:10.1103/PhysRevB.84.205428

9. Karimi, E., et al. "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light Sci. Appl., Vol. 3, e167, 2014.
doi:10.1038/lsa.2014.48

10. Alipour, A., A. Farmani, and A. Mir, "High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface," IEEE Sens. J., Vol. 18, 7047-7054, 2018.
doi:10.1109/JSEN.2018.2854882

11. Vaskin, A., R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-emitting metasurfaces," Nanophotonics, Vol. 8, 1151-1198, 2019.
doi:10.1515/nanoph-2019-0110

12. Kamali, S. M., E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, Vol. 7, 1041-1068, 2018.
doi:10.1515/nanoph-2017-0129

13. Emani, N. K., et al. "High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths," Appl. Phys. Lett., Vol. 111, 221101, 2017.
doi:10.1063/1.5007007

14. Purcell, E. M., Confined Electrons and Photons: New Physics and Applications, 839, E. Burstein and C. Weisbuch, Springer US, Boston, MA, 1995.
doi:10.1007/978-1-4615-1963-8_40

15. Schuller, J. A., et al. "Plasmonics for extreme light concentration and manipulation," Nat. Mater., Vol. 9, 193-204, 2010.
doi:10.1038/nmat2630

16. Agio, M. and D. M. Cano, "The Purcell factor of nanoresonators," Nat. Photonics, Vol. 7, 674-675, 2013.
doi:10.1038/nphoton.2013.219

17. Boriskina, S. V., T. A. Cooper, L. Zeng, G. W. Ni, and C. Gang, "Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities," Adv. Opt. Photonics, Vol. 9, 775-827, 2017.
doi:10.1364/AOP.9.000775

18. Aouani, H., et al. "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
doi:10.1021/nl302665m

19. Walmsley, I. A., "Quantum optics: Science and technology in a new light," Science, Vol. 348, 525-530, 2015.
doi:10.1126/science.aab0097

20. Zhang, Q., S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Lett., Vol. 14, 5995-6001, 2014.
doi:10.1021/nl503057g

21. Chen, J., F. Gan, Y. Wang, and G. Li, "Plasmonic sensing and modulation based on fano resonances," Adv. Opt. Photonics, Vol. 6, 1701152, 2018.

22. Ma, R., R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
doi:10.1038/nmat2919

23. Kravets, V. G., A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, "Plasmonic surface lattice resonances: A review of properties and applications," Chem. Rev., Vol. 118, 5912-5951, 2018.
doi:10.1021/acs.chemrev.8b00243

24. Bin-Alam, M. S., et al. "Ultra-high-Q resonances in plasmonic metasurfaces," Nat. Commun., Vol. 12, 974, 2021.
doi:10.1038/s41467-021-21196-2

25. Hakala, T. K., et al. "Bose-Einstein condensation in a plasmonic lattice," Nat. Phys., Vol. 14, 739-744, 2018.
doi:10.1038/s41567-018-0109-9

26. Huttunen, M., et al. "Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays," J. Opt. Soc. Am. B, Vol. 36, E30, 2019.
doi:10.1364/JOSAB.36.000E30

27. Kinkhabwala, A., et al. "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photonics, Vol. 3, 654-657, 2009.
doi:10.1038/nphoton.2009.187

28. Hsu, C. W., et al. "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 3152, 2014.
doi:10.1038/ncomms4152

29. Krasnok, A., M. Tymchenko, and A. Alù, "Nonlinear metasurfaces: A paradigm shift in nonlinear optics," Mater., Vol. 21, 8-21, 2018.

30. Reshef, O., et al. "Multiresonant high-Q plasmonic metasurfaces," Nano Lett., Vol. 19, 6429-6434, 2019.
doi:10.1021/acs.nanolett.9b02638

31. Purcell, E. and C. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
doi:10.1086/152538

32. Sauvan, C., J. Hugonin, I. Maksymov, and P. Lalanne, "Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators," Phys. Rev. Lett., Vol. 110, 2013.
doi:10.1103/PhysRevLett.110.237401

33. Kwiat, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A, Vol. 60, R773, 1999.
doi:10.1103/PhysRevA.60.R773

34. Reimer, C., et al. "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun., Vol. 6, 8236, 2015.
doi:10.1038/ncomms9236

35. Saffman, M. and T. G. Walker, "Creating single-atom and single-photon sources from entangled atomic ensembles," Phys. Rev. A, Vol. 66, 065403, 2002.
doi:10.1103/PhysRevA.66.065403

36. Lu, D., J. Kan, E. Fullerton, and Z. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotechnol., Vol. 9, 48-53, 2014.
doi:10.1038/nnano.2013.276

37. Vieu, C., et al. "Electron beam lithography: Resolution limits and applications," Appl. Surf. Sci., Vol. 164, 111-117, 2000.
doi:10.1016/S0169-4332(00)00352-4

38. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201

39. Zhong, H.-S., et al. "Quantum computational advantage using photons," Science, Vol. 370, 1460-1463, 2020.
doi:10.1126/science.abe8770