ELECTROMAGNETIC WAVES PIER 14

Progress In Electromagnetics Research
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence, or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

© 1996 EMW Publishing

All inquiries regarding copyrighted material from this publication, manuscript submission, and subscription orders should be directed to: EMW Publishing, P. O. Box 597, Kendall Square, Cambridge, Massachusetts 02142-0597, USA.

This publication is printed on acid-free paper.

ISSN 1070-4698

Manufactured in the United States of America
Progress In Electromagnetics Research

Chief Editor: J. A. Kong

Electromagnetic Scattering by Rough Surfaces and Random Media

Editors:
M. Tateiba and L. Tsang

EMW Publishing
Cambridge, Massachusetts, USA
ELECTROMAGNETIC SCATTERING BY ROUGH SURFACES AND RANDOM MEDIA

PREFACE

The technology of sensing using electromagnetic and optical waves requires the understanding of the interactions of electromagnetic waves with geophysical and biological media as well as new materials for various emerging applications. Since propagation problems are closely related to solving the scattering of electromagnetic waves by rough surfaces and random media, this PIER 14 includes recent new results for the study of such problems.

In the chapter by Ishimaru et al., a second-order Kirchhoff theory with shadowing corrections is applied to treat random rough surfaces with high slopes. It includes a good comparison with experimental results.

In the chapter by Kuga et al., experimental techniques in millimeter wave scattering are described. Such controlled laboratory experiments are important in the discovery of new physical phenomena such as backscattering enhancement and memory effects. They are also useful in verification of theoretical results.

In the chapter by Ogura and Takahashi, a stochastic functional method is discussed for scalar wave scattering by two-dimensional random rough surfaces, and numerical results are given for the case of slight roughness.

In the chapter by Au et al., the scattering and absorption in a vegetation canopy at microwave frequencies is treated with the wave approach. Unlike the approach of independent scattering and radiative transfer, the wave approach takes into account the structure of trees and vegetation which can contribute to the collective scattering and absorption effects of branches and leaves.
The chapter by Chen et al. applies the concept of collective scattering and absorption to trees generated by the stochastic Lindenmayer system. The advantage of the Lindenmayer system is that the computer growth procedure produces trees that are realistic in appearance and thus are able to simulate the collective scattering effects of such vegetation structure.

The chapter by Veysoglu and Kong derives the correlation functions rigorously for a random medium model. Such studies are useful to characterize scattering by highly inhomogeneous media.

The chapter by Tateiba and Meng presents an approach to the problem of wave scattering from a conducting body of arbitrary shape and size in a random medium. Numerical results of RCS of a cylinder surrounded by a turbulent medium are also presented.

M. Tateiba and L. Tsang

March 1996
CONTENTS

Chapter 1 POLARIMETRIC SCATTERING THEORY FOR HIGH SLOPE ROUGH SURFACES

1. Introduction .. 1
2. Formulation of the Mueller Matrix M and the Cross Section Mueller Matrix \sum 4
3. First-Order Kirchhoff and Geometric Optics Approximation .. 6
4. Evaluation of $\langle J_1 J_1^* \rangle$ in the Geometric Optics Approximation 10
5. Second-Order Kirchhoff Approximation ... 14
6. Evaluation of the Ladder Term $\langle J_2 + J_2^* \rangle$.. 16
7. Evaluation of the Cross Section for the Ladder Term ... 21
8. Evaluation of the Cyclical Term .. 23
9. Numerical Examples and Comparison with Millimeter Wave Experiment 26
10. Summary and Conclusion ... 34
 Acknowledgments ... 34
 References ... 34

Chapter 2 EXPERIMENTAL STUDIES OF MILLIMETER-WAVE SCATTERING IN DISCRETE RANDOM MEDIA AND FROM ROUGH SURFACES
Y. Kuga and P. Phu

1. Introduction .. 37
2. Random Media for Controlled Experiments .. 39
3. Experimental Systems ... 55
4. Experimental Results on Rough Surfaces and Discrete Random Media 65
5. Conclusions ... 83
 References ... 84
Chapter 3
Scattering, Radiation, and Propagation over Two-Dimensional Random Surface

H. Ogura and N. Takahashi

1. Introduction 91
2. Homogeneous Random Field and Shift Operator 93
3. Form of the Stochastic Wave Field for Plane Wave Incidence 98
4. Statistical Quantities of the Scattered Wave Field 104
5. Approximate Method of Solution 108
6. Scattering Characteristics 119
7. Relations to Other Theories 132
8. Green Function over a 2D Random Surface 135
9. Radiation over a Random Surface - Far Field from the Source and the Surface 141
10. Radiation Characteristics 145
11. Propagation over a Random Surface - Far Field along the Surface 149
12. Propagation Characteristics 166
Appendices 170
References 178

Chapter 4
Collective Scattering and Absorption Effects in Microwave Interaction with Vegetation Canopies

W. C. Au, L. Tsang, R. T. Shin, and J. A. Kong

1. Introduction 182
2. Numerical Solution of Scattering by Clusters of Thin Dielectric Cylinders 184
3. Vector Radiative Transfer Theory with Collective Scattering Behavior of Particles 196
4. Applications to Active Remote Sensing 202
5. Applications to Passive Remote Sensing 212
6. Conclusion 228
References 229
Chapter 5 APPLICATION OF STOCHASTIC LINDENMAYER SYSTEMS TO THE STUDY OF COLLECTIVE AND CLUSTER SCATTERING IN MICROWAVE REMOTE SENSING OF VEGETATION
Z. Chen, L. Tsang, and G. Zhang
1. Introduction 234
2. Modeling of Plants by Using L-Systems 236
3. Scattering from Trees Generated by L-Systems Based on Coherent Addition Approximation 246
4. Scattering from Trees Generated by L-Systems Based on Discrete Dipole Approximation 258
5. Conclusions 273
Appendices 274
References 275

Chapter 6 MULTI-SCALE CORRELATION FUNCTIONS FOR RANDOM MEDIUM MODELS
M. E. Veysoglu and J. A. Kong
1. Introduction 279
2. Random Medium Model 281
3. Computation of Correlation Functions 283
4. Summary and Conclusions 309
Appendices 310
References 313

Chapter 7 WAVE SCATTERING FROM CONDUCTING BODIES EMBEDDED IN RANDOM MEDIA - THEORY AND NUMERICAL RESULTS
M. Tateiba and Z. Q. Meng
1. Introduction 317
2. Scattering Theory 319
3. Numerical Results 331
4. Concluding Remarks 350
Appendices 252
References 359