Progress In Electromagnetics Research
ELECTROMAGNETIC WAVES

Progress
In
Electromagnetics
Research

Chief Editor: J. A. Kong

EMW Publishing
Cambridge, Massachusetts, USA
Chapter 1 WAVE SCATTERING BY PERIODIC SURFACE AT LOW GRAZING ANGLES: SINGLE GRAZING MODE
M. I. Charnotskii

1. Introduction 2
2. Integral Equations for the Scattering Problem 5
3. One-dimensional Periodic Surface 10
5. Uniform Perturbation Approximation 29
6. Conclusion 35
Appendix 38
References 39

Chapter 2 WAVE SCATTERING BY PERIODIC SURFACE AT LOW GRAZING ANGLES: TWO GRAZING MODE
M. I. Charnotskii

1. Introduction 43
2. Principal Equations and Conventional Perturbation Results 45
3. New Perturbation Expansion in the Presence of the Two Grazing Modes 51
4. Uniform Perturbation Approximation 57
5. Conclusion 64
References 66

Chapter 3 AN INVERSE SCATTERING APPROACH BASED ON A NEURAL NETWORK TECHNIQUE FOR THE DETECTION OF DIELECTRIC CYLINDERS BURIED IN A LOSSY HALF-SPACE
E. Bermani, S. Caorsi, and M. Raffetto

1. Introduction 68
2. The Neural Network Approach 69
3. Numerical Results 75
4. Conclusions 85
References 86
Chapter 4
PULSE PROPAGATION IN SEA WATER: THE MODULATED PULSE

D. Margetis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>2.</td>
<td>Formulation</td>
<td>92</td>
</tr>
<tr>
<td>3.</td>
<td>The Modulated Source Pulse: Exact Evaluation of (E_z^f (\rho, t))</td>
<td>98</td>
</tr>
<tr>
<td>4.</td>
<td>Simplified Formulas for (E_z^f (\rho, t))</td>
<td>102</td>
</tr>
<tr>
<td>5.</td>
<td>Discussion and Conclusion</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>108</td>
</tr>
</tbody>
</table>

Chapter 5
AXIS EXPANSION METHOD FOR NEARLY TWO DIMENSIONAL OBJECTS

M. Bagieu and D. Maystre

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>2.</td>
<td>Presentation of the Problem</td>
<td>113</td>
</tr>
<tr>
<td>3.</td>
<td>Theory</td>
<td>116</td>
</tr>
<tr>
<td>4.</td>
<td>Numerical Results</td>
<td>125</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusion</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>130</td>
</tr>
</tbody>
</table>

Chapter 6
MOVING COORDINATE FRAME FDTD ANALYSIS OF LONG RANGE TRACKING OF PULSED FIELDS IN GRADED INDEX WAVEGUIDES

Y. Pemper, V. Lomakin, E. Heyman, R. Kastner, and R. W. Ziolkowski

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>134</td>
</tr>
<tr>
<td>2.</td>
<td>The Moving Coordinate Frame FDTD Code</td>
<td>136</td>
</tr>
<tr>
<td>3.</td>
<td>Numerical Examples: Pulsed Beams in Nonuniform Quadratic Guides</td>
<td>146</td>
</tr>
<tr>
<td>4.</td>
<td>Summary and Conclusions</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>163</td>
</tr>
</tbody>
</table>
Chapter 7 DIFFRACTION OF ELECTROMAGNETIC WAVES BY AN OPEN ENDED PARALLEL PLATE WAVEGUIDE CAVITY WITH IMPEDANCE WALLS
B. A. Çetiner, A. Büyükaksoy, and F. Günes

1. Introduction 166
2. Analysis 167
3. Diffracted Fields and Numerical Results 188
4. Concluding Remarks 196
References 196

Chapter 8 CYLINDRICAL VECTOR WAVE FUNCTION REPRESENTATIONS OF THE DYADIC GREEN'S FUNCTIONS FOR CYLINDRICAL MULTILAYERED GYROTROPIC BIANISOTROPIC MEDIA
E. L. Tan and S. Y. Tan

1. Introduction 199
2. Eigenfunction Expansions of Electromagnetic Fields 201
3. Unbounded Dyadic Green's Functions 205
4. Scattered Dyadic Green's Functions 211
5. Application to a Coated Conducting Cylinder 216
6. Conclusion 218
Appendices 219
References 220

Chapter 9 ON THE EFFECT OF ATMOSPHERIC EMISSION UPON THE PASSIVE MICROWAVE POLARIMETRIC RESPONSE OF AN AZIMUTHALLY ANISOTROPIC SEA SURFACE
N. Pierdicca, F. S. Marzano, L. Guerrero, and Paolo Pampaloni

1. Introduction 224
2. Theoretical Formulation 226
3. Simulation of Atmospheric Effects Upon Sea Surface Polarimetric Signature 233
4. A Model Function for Correcting Atmospheric Effects in Radiopolarimetry of the Sea 241
5. Conclusions
 References

Chapter 10
ELECTROMAGNETIC SCATTERING BY
MULTILAYERED CHIRAL-MEDIA STRUCTURES:
A SCATTERING-TO-RADIATION TRANSFORM
L. W. Li, D. You, M. S. Leong, T. S. Yeo, and
J. A. Kong

1. Introduction
2. The Chiral-Medium Wave Equation
3. Electromagnetic Scattering by a Multilayered
 Chiral Sphere
4. Scattering by a Multilayered Chiral Cylinder
5. Scattering by Planarly Stratified Chiral Media
6. Conclusions
 References

Chapter 11
HEAVISIDE OPERATIONAL RULES APPLICABLE
TO ELECTROMAGNETIC PROBLEMS
I. V. Lindell

1. Introduction
2. Operational Rules
3. Other Methods
4. Multipole Fields and Sources
5. Conclusion
 Appendices
 References