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initial value problems for Maxwell’s equations with as illustration,
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investigate electromagnetic pulse propagation in dispersive media, we
analyse how to translate electromagnetic processes which take place in
a bounded domain of space-time into a boundary-initial value problem
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1. INTRODUCTION

To analyse electromagnetic wave propagation in any medium, most
people stick to Sratton’s philosophy [1] “A pulse or signal of any
specified initial form, may be constructed by superposition of harmonic
wave trains of infinite length and duration”. A curious statement,
germane to the idea that any function has a Fourier transform and
that could be jeopardized by the behaviour of digital signals generated
in the modern technology of Communication. We depart here from
this philosophy.

When one considers the propagation of electromagnetic fields
in a bounded region Ω of space, during a finite interval of time
[0, T ), as it is the case for instance, for any computer modelization
of electromagnetic processes, one has to deal with a boundary-initial
value (B-I) problem, requiring initial data at t = 0 and another set of
data on the boundary ∂Ω. In order to make these problems well posed
for Maxwell’s equations, these data have to satisfy some constraints not
always easy to formulate mathematically, that is why we investigate
these constraints for 1D-problems where calculations are less intricate.
Then, an important question that we also examine in this case, is
how to translate an electromagnetic physical process into a correct B-I
problem of Maxwell’s equations. We assume that the material inside
the region Ω is made of a Maxwell-Hopkinson (M-H for brief) dielectric
which is the simplest dispersive medium that one can imagine. The
objective of this paper is not to present a general theory of B-I problems
in electromagnetism but only to show on simple examples the pitfalls
to be avoided.

Then, the paper is organized as follows; Sec. 2 is devoted to the
mathematical background of B-I problems for Maxwell’s equations
and to the constraints to be imposed on boundary and initial data
in the frame of 1D-problems, Sec. 3 is concerned with the translation
of electromagnetic propagation in Ω × [0, T ) into a B-I problem of
Maxwell’s equations still in the case of 1D-problems. Conclusive
comments are given in Sec. 4.

2. B-I PROBLEMS FOR MAXWELL’S EQUATIONS

2.1. Mathematical Background

With the light velocity unity, Maxwell’s equations in a nonconducting
medium {x = (x, y, z)}

curlE(x, t) = −∂tB(x, t), curlH(x, t) = ∂tD(x, t),

divE(x, t) = divB(x, t) = 0
(1)
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become with B = µH, leaving aside the divergence equations

curlE(x, t) = −µ∂tH(x, t), curlH(x, t) = ∂tD(x, t) (1a)

from which we get the following equation where ∆ is the laplacian
operator

∆E(x, t) − µ∂2
t D(x, t) = 0 (2)

Now, a M-H medium is characterized by the constitutive relation [2]

D(x, t) = εE(x, t) +

∫ t

0
Φ(t − τ)E(x, τ)dτ (3)

where ε is a positive constant and Φ(t), t > 0, a monotonically
decreasing function of t continuous for 0 < t < ∞. Note that along
this paper E is zero in the M-H medium for t < 0. The displacement
field D satisfies an integrodifferential equation [3] which seems to have
been largely unnoticed:

εµ∂2
t D(x, t) = ∆D(x, t) +

∫ τ

0
Ψ(t − τ)∆D(x, τ)dτ (4)

in which Ψ(t) is given by the iterative series whose convergence is
discussed in [4]

Ψ(t) =
∞∑

n=1

(−1)nΨn(t), Ψ1(t) = ε−1Φ(t),

Ψn(t) =

∫ t

0
Ψ1(t − τ)Ψn−1(τ), n ≥ 2

(4a)

To look for the solutions of Eq. (2) with D given by (3), we use the
Laplace transform [5]

f(s) =

∫ ∞

0
exp(−st)F (t)dt, Re · s > 0, t ≥ 0 (5)

so that with evident notations and taking into account the property of
the Laplace transform to change a convolution product into an ordinary
product, the constitutive relation (3) becomes

d(x, s) = εe(x, s) + φ(s)e(x, s) (6)

Then, assuming the initial conditions

D(x, 0) = εE(x, 0) = F(x), ∂tD(x, 0) = ε∂tE(x, 0) = G(x) (7)
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and using the Laplace transform way of tackling derivatives, the
integrodifferential equation (4) changes into

∆d(x, s) + ψ (s)d(x, s)− n2
0[s

2d(x, s)− sF(x)− G(x)] = 0, n2
0 = εµ

(8)
while Eq. (2) becomes

∆e(x, s) − µ[s2d(x, s)− sF(x) − G(x)] = 0 (9)

and substituting (6) into (9) gives

∆e(x, s)− s2n(s)e(x, s) = V(x, s) (10)

n2(s) = µ[ε + φ(s)], V(x, s) = −µ[sF(x) + G(x)] (10a)

But for physical reasons and to satisfy causality, the partial differential
equation (10) has to be hyperbolic and it has been proved [3] that this
condition is fulfilled if φ(s) is the quotient of two polynomials p(s)/q(s)
with degree q > degree p so that according to (10a) n2(s) is the quotient
of two polynomials with the same degree and

lim
s⇒∞

n2(s) = n2
0 = εµ (11)

For instance, in a M-H dielectric [2], φ(s) =
∑N

1 αn(s + an)−1 where
αn, an, are positive constants depending on the constitutive material
of the dielectric and the Davis criterion is satisfied.

Now, as said in the introduction, one is interested in the solutions
of Eq. (10) in some region Ω of space so that one has still to supply
data on its boundary ∂Ω and the specification of these data can become
quite involved [4] to pose physical problems in a convenient manner.
The initial conditions impose some constraints on the solutions of
(10) that also intervene to limit the set of possible boundary data
required to define a well posed problem. To make calculations easier
without losing the essentials, we discuss these constraints in the next
two sections on the solutions of the 1D-partial differential equation

∂2
ze(z, s)−s2n2(s)e(z, s) = V(z, s), V(z, s) = −µ[sF(z)+G(z)] (12)

As a simple example, the solution of the B-I problem for the 1D-scalar
wave equation

∂2
zΨ(z, t) − ∂2

t Ψ(z, t) = 0, z, t ≥ 0 (12a)

with the initial and boundary conditions

Ψ(0, t) = h(t) t ≥ 0, Ψ(z, 0) = f(z), ∂tΨ(z, 0) = g(z) (12b)



EM pulse propagation in dispersive media 303

where f, g, h, are given functions with continuous second derivatives
and moreover

h(0) = f(0), h′(0) = g(0), h′′(0) = f ′′(0) (12c)

has continuous second derivatives even on the characteristic line z−t =
0.

Of course, once known e(x, s), one has still to perform an inverse
Laplace transform to obtain E(x, t) either by using tables [6], by
analytical calculations in the complex s-plane [7] or by numerical
computations [8].

2.2. Constraints Imposed by Initial Conditions

With n written for n(s), one proves in Appendix A that the general
solution of (12) is

e(z, s) = a(s)e−snz + b(s)esnz − (1/2sn)

∫ 0

−∞
du esnuV(z + u, s)

− (1/2sn)

∫ ∞

0
du e−snuV(z + u, s) (13)

in which a(s) and b(s) are two arbitrary functions.
But, according to the Abel-Tauber theorem [5], lims⇒∞ s f(s) =

limt⇒0 F (t) when both limits exist, so the solutions (13) must satisfy
the conditions obtained from (7)

lim
s⇒∞

s e(z, s) = E(z, 0) = ε−1F(z) (14a)

lim
s⇒∞

s [s e(z, s) −V(z, s)] = ∂tE(z, 0) = ε−1G(z) (14b)

which implies in particular

lim
s⇒∞

s a(s)e−snz = 0, lim
s⇒∞

s b(s)esnz = 0 (15)

and assuming that a(s) and b(s) are not exponentially increasing or
decreasing at infinity, we get

a(s) = 0 z < 0, b(s) = 0 z > 0 (15a)

Taking into account (15), the relations (14a), (14b) become

lim
s⇒∞

{
−(1/2n)

∫ 0

−∞
du esnuV(z+u, s)−(1/2n)

∫ ∞

0
du e−snuV(z+u, s)

}

= ε−1F(z) (16a)

lim
s⇒∞

{
(µs/2n)

∫ 0

−∞
du esnuG(z+u)+(µs/2n)

∫ ∞

0
du e−snuG(z+u)

}

= ε−1G(z) (16b)
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These relations are checked in Appendix B with the help of (11).

2.3. Constraints on Boundary Conditions

We consider three different situations according as the M-H dielectric
fills in all the space −∞ < z < ∞ the half space 0 < z < ∞ or the
sheet 0 < z < z0.

2.3.1. Solutions in the Full Space

In this case, the electric field E must be zero at infinity which implies
according to (15a) a(s) = b(s) = 0 so that Eq. (13) reduces to

e(z, s) = −(1/2sn)

[∫ 0

−∞
du esnuV(z + u, s) +

∫ ∞

0
du e−snuV(z + u, s)

]

(17)
with V(z, s) compelled to satisfy the condition limz⇒∞ V(z, s) = 0
which imposes a constraint on the initial conditions F(z) and G(z). As
a simple example of pulse propagation in a M-H dielectric, we suppose
the initial conditions

F(z) = F exp(iωz), Imω > 0, G(z) = 0 (17a)

where F is an arbitrary constant vector. Then, the solution of (17) is

e(z, s) = Fs2
(
s2n2 + ω2

)−1
exp(iω|z|) (18)

and, in a Lorentz-like medium [1, 9] with the refractive index satisfying
the Davis criterion

n2(s) = s−2
(
s2 + s2

0

)
(18a)

this solution becomes

e(z, s) = F s
(
s2 + s2

0 + ω2
)−1

exp(iω|z|) (19)

And the inverse Laplace transform of (19) has the simple expression
[5] justifying the choice of (18a)

E(z, t) = F cos

[(
s2
0 + ω2

)1/2
t

]
exp(iω|z|) (19a)

which illustrates in a simple way the B-I problems of Maxwell’s
equations in full space.
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2.3.2. Solutions in the Half Space 0 < z < ∞

The condition E = 0 at infinity implies as in the last section b(s) = 0
and limz⇒+∞ V(z, s) = 0, but we now need boundary data on the face
z = 0. And, as well known, they must make continuous the tangential
components Ej(j = 1, 2) of the electric field (E1 = Ex, E2 = Ey) while
the third component must guarantee the divergence equation divE = 0
that reduces here to ∂zEz = 0 and requires ∂zVz(z, s) = 0 giving two
further constraints on the initial conditions ∂zFz(z) = 0, ∂zGz(z) = 0.

So, from now on, we only work with the tangential components
Ej, Vj, of the vector fields E, V, and since bj(s) = 0, the solution (13)
reduces to

ej(z, s) = aj(s)e
−snz − (1/2sn)

[∫ 0

−∞
du esnuVj(z + u, s)

+

∫ ∞

0
du e−snuVj(z + u, s)

]
, j = 1, 2 (20)

where as just said Vj(z, s) is compelled to satisfy limz⇒+∞ Vj(z, s) = 0.
Now, let Ej(0, t) = Kj(t) denote the boundary data on the face

z = 0 then, with the Laplace transform kj(s) of Kj(t) we get from (20)

kj(s) = aj(s)− (1/2sn)

[∫ 0

−∞
du esnuVj(u, s) +

∫ ∞

0
du e−snuVj(u, s)

]
,

j = 1, 2 (21)

These two equations supply aj(s) which achieves to determine the
solution (20) of the B-I problem in the half space 0 < z < ∞.

To illustrate (20), we suppose, with for simplicity ε = µ = n0 = 1,
that the initial conditions take the form

Fj(z) = Fj exp(−λz), Re · λ > 0, Gj(z) = 0 (22)

Substituting (22) into (20) and (21) gives

ej(z, s) = aj(s)e
−snz + Fjs exp(−λz)

(
s2n2 − λ2

)−1
(23)

kj(s) = aj(s) + Fjs
(
s2n2 − λ2

)−1
(23a)

and we further assume kj(s) such that

aj(s) = kj(s) − Fjs
(
s2n2 − λ2

)−1
= aj(s + i$)−1, i =

√
− 1 (24)
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where aj and $ are constant. Then, taking into account (24), the
solution (23) becomes

ej(z, s) = aje
−snz(s + i$)−1 + Fjs exp(−λz)

(
s2n2 − λ2

)−1
(25)

Suppose now a medium with the refractive index (it is not claimed to
represent a material medium)

n(s) = (s0 + s)/s, s0 positive constant (25a)

then we get from (25)

ej(z, s) = aj exp[−(s + s0)z](s + i$)−1

+Fjs exp(−λz)(s + s0 − λ)−1(s + s0 + λ)−1 (26)

with the inverse Laplace transform [5] in which U is the unit step
function

Ej(z, t) = aj exp[−s0z + i$(t − z)]U(t − z)

+Fj exp[−(λz + s0t)][cos(λt) − sin(λt)/s0] (26a)

which must be considered as a simple illustration of a B-I problem in
the half space 0 < z < ∞.

We did not use the refractive index (18a) since the presence of a
branch point in the exponential exp(−snz) makes calculations of the
inverse Laplace transform much more difficult, leading to the kind of
problem discussed a long time ago by Sommerfeld [10] and Brillouin
[11] and correctly solved only recently [12].

Calculations in this section prove also that, contrarily to an
opinion largely spread, one cannot dispense with divergence equations
when one has to deal with electromagnetic B-I problems. This remark,
made also recently [13, 14], is important for the numerical modelization
of electromagnetic processes where the negligence of divergences can
generate spurious solutions.

2.3.3. Solutions in the Sheet 0 < z < z0

From a mathematical point of view, this situation is no more difficult to
tackle than the previous one, once known the boundary conditions on
a face of the sheet, but for physical reasons to be discussed in the next
section these conditions are difficult to obtain. So, mathematically
with Kj(t) given at z = 0 the equations (20) and (22) are still valid
with no more constraint on Vj(z, s) and, as soon as aj(s) is obtained
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from (22), the boundary conditions on the face z = z0 follows from
(20)

ej(z0, s) = aj(s) exp(−snz0) − (1/2sn)

·
[∫ 0

−∞
du esnuVj(z0+u, s)+

∫ ∞

0
du e−snuVj(z0+u, s)

]
(27)

Then, Descartes-Snell law and Fresnel formulae supply the electromag-
netic field in the region z > z0.

3. ELECTROMAGNETIC B-I PROBLEMS

3.1. Pulse Propagation in a Half-Space

The B-I problems of Maxwell’s equations are discussed in Sec. 2
from a mathematical point of view, without taking into account the
physical constraints imposed on initial and boundary data by the
electromagnetic theory. It was only noticed that boundary data
concern the tangential components of the electric field. Still working
with 1D-problems, we now investigate on a simple example how to
translate an electromagnetic process into a B-I problem.

We suppose that free space and M-H dielectric fill in respectively
the half-space −∞ < z < 0 and 0 < z < ∞. A linearly polarized,
truncated, harmonic plane wave with amplitude Ai propagates in free
space z < 0, t < 0

Ex(z, t) = Ai exp[iω(t−z)][U(t−z)−U(t−t0−z)], Ey = Ez = 0 (28)

and impinges on the M-H dielectric, t0 is the duration of the pulse
and U the unit step function. Leaving aside the reflected pulse, one is
interested in the transmitted field which is the solution (20) for t, z, > 0
so that one needs the boundary-initial data ax(s) and Vx(z, s) (from
now on, the subscript x is suppressed since no confusion is possible).

For z = 0 and t = 0 that is just at the time when the pulse reaches
the dielectric

E(z, t) = A exp[iω(t − z)][U (t − z) −U (t − t0 − z)] (29)

in which according to Fresnel’s formulae A = 2(n1 + n0)
−1, n1 and

n0 =
√

εµ are respectively the refractive indices of free space and of
the M-H dielectric at t = 0. So, we get from (29) at t = 0+

E(z, 0+) = A exp(−iωz)[U(−z)− U(−t0 − z)] (30)
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Now, from the definition U(x) =
∫ x
−∞ δ(ξ)dξ where δ is the Dirac

distribution, we get U(−x) = 1 −U (x) so that Eq. (30) becomes

E(z, 0+) = A exp(−iωz)[U(t0 + z)− U(z)] (30a)

This expression is zero for z > 0 since U (t0 + z) = U (z) = 1 but for
z = 0 : U(t0 + z) − U(z) = 1/2 since the inverse Laplace transform
U(t) = L−1(1/s) implies U(0) = 1/2 [15] while U(t0) = 1. So, finally

F (z) = E(z, 0) = A/2 (31)

From the time derivative of (29)

∂tE(z, t) = iωE(z, t)+ A exp[−iω(t− z)][δ(t− z)− δ(t− t0 − z)] (32)

we get for t = 0+, using (31) and taking into account the relation
δ(−z) = δ(z)

G(z) = ∂tE(z, 0+) = iωA/2 + A[δ(z) − exp(iωt0)δ(t0 + z)] (32a)

Then, substituting (31) and (32a) into the expression (12) of Vj(z, s)
gives the initial data

V (z, s) = −(µA/2)(s + iω) − µA[δ(z)− exp(iωt0)δ(t0 + z)] (33)

We now need the boundary condition k(s) at z = 0 with according to
(29)

K(t) = E(0+, t) = A exp(iωt)[U(t) −U (t − t0)] (34)

with the Laplace transform

k(s) = A(s − iω)−1 {1 − exp[−t0(s − iω)]} (34a)

To obtain a(s), one has just to substitute (33) and (34a) in Eq. (21)
and we get in Appendix C

a(s) = k(s)−(µA/2s2n2)(s+iω)−(µA/2sn){1−exp[−t0(s−iω)]} (35)

Finally, substituting (33) into (20) and using the relation (C6) of
Appendix C give in the s-domain the equation of a truncated harmonic
pulse propagating in a M-H dielectric:

e(z, s) = a(s)e−snz + (µA/2s2n2)(s + iω)

+(µA/2sn)e−snz{1 − exp[−t0(s − iω)]} (36)

which becomes with (35) and k(s) given by (34a)

e(z, s) = k(s) exp(−snz) + (µA/2s2n2)(s + iω)[1− exp(−snz)] (36a)
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Still using the refractive index (25a), we get from (36a)

e(z, s)=k(s) exp[−(s+s0)z]+[µA/2(s+s0)
2](s+iω){1−exp[−(s+s0)z]}

(37)
with the inverse Laplace transform Et(z, t) in which E(z, t) is the field
(29)

Et(z, t) = exp(−s0z)E(z, t) + (µA/2)Q(t)U (t)

−(µA/2) exp(−s0z)Q(t − z)U(t − z) (38)

Q(t) = cos(s0t) + iωs−1 sin(s0t) (38a)

As noticed in Sec. 2.3.2, the inverse Laplace transform of (36a) would
be more difficult to get with the refractive index (18a).

3.2. Pulse Propagation in a Sheet

Suppose now that the pulse (28) impinges on the sheet 0 < z < z0.
In Sec. 2.3.3 the boundary condition on the face z = 0 was assumed
to be known which made easy the solution of the B-I problem but the
trouble is that this condition depends on the field reflected at z = z0.
So in fact one has to deal with a two-point B-I problem which is of a
different nature.

To tackle two-point boundary value problems, very frequent for
instance in nuclear industry to estimate the shielding against neutrons
and gammas offered by sheets of different materials, Bellman and
co-workers [16, 17] have developed many years ago the invariant
imbedding technique which has been the object of many works ( a
bibliography till 1978 is given in [18, 19]). Recently this technique
was applied to electromagnetism by Weston [20] and the swedish
school of applied mathematics and a complete bibliography on the
period 1990–2000 can be found in Gustafson’s doctoral thesis [21].
An interested reader should consult these works mainly devoted to
the conditions for the existence of a solution while in some papers
a numerical implementation of the formalism is discussed when the
incident field is a plane wave.

4. DISCUSSION

As said in the introduction, in order to centre on the essential
difficulties of electromagnetic B-I problems in dispersive media, we
worked with a very simple M-H dielectric but to deal with most of
electromagnetic processes, one should have to consider media with
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more elaborate constitutive relations. As early as 1912, Volterra
[22] extended the Maxwell-Hopkinson theory to situations where the
dielectric is anisotropic, nonlinear and magnetized but still keeping
an a-priori separation between electric and magnetic effects. Finally
Toupin and Rivlin [23] removed this last restriction to get the
constitutive relations in the form used to day [24]. Then, B-I problems
of Maxwell’s equations in media with these constitutive relations may
be solved as in M-H dielectrics but at the expense of more calculations,
specially in chiral media.

As also noticed in the introduction, it is easy to impose initial
conditions while the specification of boundary data on the boundary
∂Ω of an arbitrary region Ω may be quite involved to pose a physical
problem in a convenient and correct manner. One has in fact to
deal with a ill-posed problem in the Hadamard sense [25] since the
hereditary constitutive relations (a term coined by Volterra) such
as (2) require to know all the past of the material to solve B-I
problems. So, it is important to investigate how to choose the boundary
conditions to make sure that the B-I problem has a unique solution. A
mathematically inclined reader, familiar with Sobolev spaces will find
some responses in two recent books [26, 27].

Because of the difficulty to formulate correctly the B-I problems
of mathematical physics, most of the works devoted to these problems
concern, as just said, the conditions for the existence and the
uniqueness of a solution at the price of an heavy mathematical
machinery [26]. It does not seem that practical problems were the
object of thorough investigations, probably not only because of the
above mentioned difficulties but also since many electromagnetic time-
dependent processes discussed in infinite or bounded media do not need
initial conditions: one has just to make sure that causality is respected
which can be obtained by the use of retarded potentials. But this
situation could change with the advent of digital signals for which
time plays a dual role, on one hand that of an evolution parameter as
for continuous pulses and on the other hand that of a duration counter.
Consequences of causality intervene differently in both roles: think of
the pulse (28), impinging on the M-H dielectric with the incidence H,
the fact that all the parts of the signal do not reach the face z = 0 at
the same time, generates already a distortion independently of what
happens inside the dielectric.

The objective of this paper was to show on simple illustrative
examples the traps to be avoided in the dealing with B-I problems but
this should not deter people to work on these problems specially those
thinking they could become important in the future.
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REMARK

After completion of this work, an interesting paper [28] has appeared
on the existence of a current density j such as the initial data B0, D0,
at t = 0 take in Ω the state B, D, at t = T .

APPENDIX A.

One checks easily that the functions exp(±snz) are solutions of the
homogeneous differential equations ∂2

z e(z, s) − s2n2e(z, s) = 0. We
now prove that the solution of Eq. (12) is

e(z, s) = −(1/2sn)

[∫ 0

−∞
du esnuV(z + u, s) +

∫ ∞

0
du e−snuV(z + u, s)

]

(A1)
The z-derivative of (A1) is with V′ = ∂zV = ∂uV

∂ze(z, s)=−(1/2sn)

[∫ 0

−∞
du esnuV′(z+u, s)+

∫ ∞

0
du e−snuV′(z+u, s)

]

(A2)
and integrating by parts

∂ze(z,s)=−
{
(1/2sn)[esnuV(z+u, s)]0−∞+(1/2sn)

[
e−snuV(z+u, s)

]∞
0

}

+(1/2)

∫ 0

−∞
du esnuV(z+u, s)−(1/2)

∫ ∞

0
du e−snuV(z+u, s) (A3)

but the quantity inside the curly bracket is zero so that

∂2
ze(z, s) = (1/2)

∫ 0

−∞
du esnuV′(z+u, s)−(1/2)

∫ ∞

0
du e−snuV′(z+u, s)

(A4)
Still integrating by parts gives

∂2
ze(z, s) =

{
(1/2)[esnuV(z + u, s)]0−∞ − (1/2)

[
e−snuV(z + u, s)

]∞
0

}

−(sn/2)

[∫ 0

−∞
du esnuV(z+u, s)+

∫ ∞

0
du e−snuV(z+u, s)

]
(A5)

The term inside the curly bracket in (A5) is V(z, s) while the second
term is s2n2e(z, s) and we get

∂2
ze(z, s) = V(z, s) + s2n2e(z, s) (A6)

which is the equation (12).
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APPENDIX B.

To prove (16a), we first note that according to (10a) and (11) V(z, s) ≈
−µsF(z) while n reduces to n0 for s ⇒ ∞. Then, the left hand side of
(16a) may be written

lim
s⇒∞

A(z, s) = (µs/2n)

[∫ 0

−∞
du exp(sn0u)F(z + u)

+

∫ ∞

0
du exp(−sn0u)F(z + u)

]
(B1)

and integrating by parts gives

lim
s⇒∞

A(z, s) =
{
(µ/2n2

0)[exp(sn0u)F(z + u)]0−∞

− (µ/2n2
0)[e

−snuF(z + u)]∞0

}

− lim
s⇒∞

[
(µ/2n2

0)

∫ 0

−∞
du exp(sn0u)F′(z + u)

+ (µ/2n2
0)

∫ ∞

0
du exp(−sn0u)F′(z + u)

]
(B2)

The term inside the curly bracket is µ/2n2
0 F(z) = ε−1F(z) while the

quantity inside the square bracket is zero as easily seen by exchanging
integration and limit.

One observes at once that (16b) is exactly (B1) with F(z) changed
into G(z) so that (B2) implies (14b).

APPENDIX C.

We write (33): V(z, s) = V1(z, s) + V2(z, s) with

V1(z, s) = −µA(s+iω)/2, V2(z, s) = −µA[δ(z)−exp(iωt0)δ(t0+z)]
(C1)

Then a simple calculation gives
∫ 0

−∞
du esnuV1(u, s) +

∫ ∞

0
du e−snuV1(u, s) = −µA(s + iω)/sn (C2)

while using the relation
∫ 0
−∞ f(x)δ(x − x0)dx = bf(x0) with b = 1 if

x0 ∈ (−∞, 0), b = 1/2 for x0 = 0 and b = 0 when x0 is in the interval
(0,∞) we get
∫ 0

−∞
du esnuV2(u, s)+

∫ ∞

0
du e−snuV2(u, s)=−µA{1−exp[−t0(sn+iω)]}

(C3)
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and finally
∫ 0

−∞
du esnuV(u, s) +

∫ ∞

0
du e−snuV(u, s)

= −µA(s + iω)/sn − µA{1 − exp[−t0(sn + iω)]} (C4)

Then, substituting (C4) into Eq. (21) gives

a(s) = k(s)− (µA/2s2n2)(s + iω)− (µA/2sn){1 − exp[−t0(s − iω)]}
(C5)

Changing u into z + u in (C4) gives
∫ 0

−∞
du esnuV(z + u, s) +

∫ ∞

0
du e−snuV(z + u, s)

= −µA(s + iω)/sn − µAe−snz{1 − exp[−t0(sn + iω)]} (C6)
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