Vol. 1
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-03
Electromagnetic Model for Microwave Components of Integrated Circuits
By
Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008
Abstract
This paper presents an accurate and robust time-domain electromagnetic model for microwave components of integrated circuits. The time-domain model has been validated on different structures such as metallic waveguides, planer lines and the transition of waveguide-microstrip line under harmonic oscillation excitation. The results obtained from simulation were compared to the experimental test results. The simulation results demonstrated that the approach is suitable to model microwave components of integrated circuits.
Citation
Farah Mohammadi, and Mustapha Yagoub, "Electromagnetic Model for Microwave Components of Integrated Circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802
References

1. Park, J. K., D. H. Shin, J. N. Lee, and H. J. Eom, "A full-wave analysis of a coaxial waveguide slot bridge using the Fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

2. Tan, K.-B., L. Li, and C.-H. Liang, "Canonical analysis for dissipative electromagnetic medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1499-1505, 2006.

3. Taflove, M. A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Norwood, MA, 2000.

4. Mur, G., "Total field absorbing boundary conditions for the time domain electromagnetic field equations," IEEE Trans. on Electromagnetic Compatibility, Vol. 40, No. 2, 100-102, May 1998.
doi:10.1109/15.673614

5. Berenger, J. P., "Making use of the PML absorbing boundary condition in coupling and scattering FDTD computer codes," IEEE Trans. on Electromagnetic Compatibility, Vol. 45, No. 2, 189-197, May 2003.
doi:10.1109/TEMC.2003.810803

6. Yu, T.-B., B.-H. Zhou, and B. Chen, "An unsplit formulation of the Berenger’s PML absorbing boundary condition for FDTD meshes," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 8, 348-350, August 2003.
doi:10.1109/LMWC.2003.815694

7. Watanabe, K. and K. Yasumoto, "Two-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902

8. Gedney, S. D., G. Liu, J. A. Roden, and A. Zhu, "Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method," IEEE Trans.on Antennas and Propagation, Vol. 49, 1554-1559, November 2001.
doi:10.1109/8.964091

9. Arndt, F., R. Lotez, and J. Ritter, "Advanced FD-TD techniques for the CAD of microwave components," Electromagnetics, Vol. 23, 153-168, Feb.-Mar. 2003.

10. Jiao, D. and J. M. Jin, "Time-domain finite-element modeling of dispersive media," IEEE Trans. Microwave and Wireless Components Letters, Vol. 11, 220-223, May 2001.
doi:10.1109/7260.923034

11. Arnold, M. D., "An efficient solution for scattering by a perfectly conducting strip grating," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905

12. Gelius, L.-J., "Electromagnetic scattering approximations revisited," Progress In Electromagnetics Research, Vol. 76, 75-94, 2007.
doi:10.2528/PIER07062501