Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-29
Proposed Mac Protocol Versus IEEE 802.15.3a for Multimedia Transmission Over UWB Networks
By
Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008
Abstract
In this paper, a Medium Access Control (MAC) protocol is proposed to investigate Quality of Service (QoS) for multimedia traffic transmitted over Ultra Wide-Band (UWB) networks and increase the system capacity. This enhancement comes from using Wise Algorithm for Link Admission Control (WALAC) which has three suggested versions. The QoS of multimedia transmission is determined in terms of average delay, admission ratio, loss probability, utilization, and the network capacity. In addition, a new parameter is aroused for the network performance. Comparisons between the IEEE 802.15.3a protocol and the proposed one are done. The proposed protocol shows better results in both sparse and dense networks for real time traffic transmission.
Citation
Nawal Ahmed El-Fishawy, Mona Mohammed Shokair, and Waleed Saad Fouad HIlmy, "Proposed Mac Protocol Versus IEEE 802.15.3a for Multimedia Transmission Over UWB Networks," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
doi:10.2528/PIERB07111812
References

1. Park, C. and T. S. Rappaport, "Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee," IEEE Wireless Communications, Vol. 14, 70-78, August 2007.
doi:10.1109/MWC.2007.4300986

2. Federal Communications Commission, , First report and order in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems, FCC 02-48, Apr. 2002.

3. Shen, X. S., H. Jiang, and J. Cai, "Medium access control in ultrawideband wireless networks," IEEE Transactions on Vehicular Technology, Vol. 54, 1663-1677, 2005.
doi:10.1109/TVT.2005.853888

4. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), IEEE Computer Society, September 29 2003.

5. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 1: MAC Sublayer, IEEE Computer Society, May 5 2006.

6. Ellis, J., K. Siwiak, and R. Roberts, Tg3a technical requirements, IEEE P802.15-03/030r0, December 27 2002.

7. Mandke, K., H. Nam, L. Yerramneni, and C. Zuniga, The evolution of UWB and IEEE 802.15.3a for very high data rate WPAN, Tech. Rep., EE 381K-11 Wireless Communications, May 6 2003.

8. DS-UWB Physical Layer Submission to 802.15 Task Group 3a, IEEE P802.15-04/0137r5, September 2005.

9. MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, MultiBand OFDM Alliance SIG, 2004.

10. Chin, K.-W. and D. Lowe, "Asim ulation study of the ieee 802.15.3 MAC," Australian Telecommunications and Network Applications Conference (ATNAC), Sydney, Australia, December 2004.

11. Gast, M., 802.11 Wireless Networks: The Definitive Guide, O'Reilly, April 2002.

12. Xu, P., M. Yu, and C. Yang, "MAC protocol for ultra-wide-band (UWB) wireless multimedia networks," Internet and Multimedia Systems and Applications, August 16-18 2004.

13. Radunovic, B. and J.-Y. Le Boudec, When power adaptation is useless or harmful, Tech. Rep., IC, 2004/60, July 2004.

14. Martello, C., "UWB radio resource control: MAC functional model and resource sharing approach," Available at: http://net.infocom.uniroma1.it/papers/uwbnwu01.pdf.

15. Win, M. and R. Scholdtz, "Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless multi-pleaccess communications," IEEE Transactions on Communication, Vol. 48, 649-691, April 2000.
doi:10.1109/26.843135

16. Cuomo, F., C. Martello, and A. Baiocchi, "Radio resource sharing for Ad Hoc networking with UWB," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9, 1722-1732, Dec. 2002.
doi:10.1109/JSAC.2002.805309

17. Chu, Y. and A. Ganz, "MAC protocols for multimedia support in UWB-based wireless networks," Available at: www.broadnets.org/2004/workshop-papers/Broadwim/broadwim2004-Paper09-yuechun.pdf .

18. Yomo, H., P. Popovski, C. Wijting, I. Z. Kovacs, N. Deblauwe, A. F. Baena, and R. Prasad, "Medium access techniques in ultra wideband Ad Hoc networks," This paper describes work undertaken partly in the context of the IST-2001-34157 Power aware Communications for Wireless OptiMised personal Area Network (PACWOMAN). The IST program is partially funded by the EC. Available at: http://cpk.auc.dk/FACE/documents/Publication/hiro/etai.pdf.

19. Mezzour, M., "Direct spread spectrum (ds)/time hopping (th) UWB performances comparison in a multi-user Ad Hoc environment," Available at: www.mics.ch/SumIntU04/MohamedMezzour.pdf.

20. Qiu, X. and K. Chawla, "On the performance of adaptive modulation in cellular systems," IEEE Transactions on Communications, Vol. 47, No. 6, 884-895, June 1999.
doi:10.1109/26.771345

21. Akyildiz, I. F., D. A. Levine, and I. Joe, "A slotted CDMA protocol with BER scheduling for wireless multimedia networks," IEEE/ACM Trans. Net., Vol. 7, No. 2, 146-158, Apr. 1999.
doi:10.1109/90.769764

22. Huang, V. and W. Zhuang, "Qos-oriented packet scheduling for wireless multimedia cdma communications," IEEE Trans. Mobile Comput., Vol. 3, No. 8, 73-85, Mar. 2004.
doi:10.1109/TMC.2004.1261818

23. Jiang, S., J. Rao, D. He, X. Ling, and C. C. Ko, "A simple distributed prma for manets," IEEE Trans. Veh. Technol., Vol. 51, No. 2, 293-305, Mar. 2002.
doi:10.1109/25.994807

24. El-Fishawy, N., M. Shokair, and W. Saad, "Ano vel MAC protocol for high rate UWB network," IEEE Conference on Wireless Rural and Emergency Communications Conference (WRECOM 2007), Rome, Italy, October 1-2 2007.

25. El-Fishawy, N., M. Shokair, and W. Saad, "Quality of service provisioning for multimedia transmission over uwb networks," submitted to Alexandria Engineering Journal (AEJ).

26. Goodman, D. J., R. A. Valenzuela, K. T. Gayliard, and B. Ramamurthi, "Packet reservation multiple access for local wireless communications," IEEE Trans. Commun., Vol. 37, 885-603, Aug. 1989.
doi:10.1109/26.31190

27. Goodman, D. J. and S. X. Wei, "Efficiency of packet reservation multiple access," IEEE Transactions on Vehicular Technology, Vol. 40, No. 1, 170-176, Feb. 1991.
doi:10.1109/25.69985