Vol. 5
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-21
A Symmetrical Circuit Model Describing All Kinds of Circuit Metamaterials
By
Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008
Abstract
We present a generally symmetrical circuit model to describe all kinds of metamaterials with effective permittivity and permeability. The model is composed of periodic structures whose unit cell is a general T-type circuit. Using the effective medium theory, we derive analytical formulations for the effective permittivity and effective permeability of the circuit model, which are quite different from the published formulas [1, 2]. Rigorous study shows that such a generally symmetrical model can represent right-handed materials, left-handed materials, pure electric plasmas, pure magnetic plasmas, electric-type and magnetic-type crystal bandgap materials at different frequency regimes, with corresponding effective medium parameters. Circuit simulations of real periodic structures and theoretical results of effective medium models in this paper and in [1] and [2] are presented. The comparison of such results shows that the proposed medium model is much more accurate than the published medium model [1, 2] in the whole frequency band.
Citation
Tie-Jun Cui, Hui-Feng Ma, Ruo Liu, Bo Zhao, Qiang Cheng, and Jessie Chin, "A Symmetrical Circuit Model Describing All Kinds of Circuit Metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
doi:10.2528/PIERB08013009
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 68, John Wiley & Sons, New York, 2004.

2. Eleftheriades, G. V. and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Properties and Applications, 15, John Wiley & Sons, New York, 2005.

3. Mao, S. G. and Y. Z. Chueh, "Broadband composite right/left-handed coplanar waveguide power splitters with arbitrary phase responses and balun and antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 54, 243-250, 2006.
doi:10.1109/TAP.2005.861574

4. Cui, T. J., Q. Cheng, Z. Z. Huang, and Y. J. Feng, "Electromagnetic wave localization using a left-handed transmission-line superlens," Phys. Rev. B, Vol. 72, 035112, 2005.
doi:10.1103/PhysRevB.72.035112

5. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2566, 2003.
doi:10.1109/TAP.2003.817553

6. Eleftheriades, G. V., "A generalized negative-refractive-index transmission-line (NRICTL) metamaterial for dual-band and quad-band applications," IEEE Microwave Wireless Compon. Lett., Vol. 17, 415-417, 2007.
doi:10.1109/LMWC.2007.897786

7. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory. Tech., Vol. 50, 2702-2710, 2002.
doi:10.1109/TMTT.2002.805197

8. Lin, X. Q., Q. Cheng, R. Liu, D. Bao, and T. J. Cui, "Compact resonator filters and power dividers designed with simplified metastructures," Journal of Electromagnetic Waves and Applications, Vol. 21, 1663-1672, 2007.
doi:10.1163/156939307783239483

9. Li, Z. and T. J. Cui, "Novel waveguide directional couplers using left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, 1053-1062, 2007.

10. Guo, Y. and R. M. Xu, "Planar metamaterials supporting multiple left-hande dmodes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001

11. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

12. Qin, Y. and T. J. Cui, "A general representation of left-handed materials using LC-loaded transmission lines," Microwave Opt. Tech. Letts., Vol. 48, 2167-2171, 2006.
doi:10.1002/mop.21883

13. Liu, R., B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, "Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model," Phys. Rev. B, Vol. 75, 125118, 2007.
doi:10.1103/PhysRevB.75.125118

14. Liu, R., T. J. Cui, B. Zhao, X. Q. Lin, H. F. Ma, D. Huang, and D. R. Smith, "Resonant crystal bandgap metamaterials in microwave regime and their exotic amplification of evanescent waves," Appl. Phys. Lett., Vol. 90, 091912, 2007.
doi:10.1063/1.2709897

15. Liu, R., T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Phys. Rev. E, Vol. 76, 026606, 2007.
doi:10.1103/PhysRevE.76.026606

16. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.

17. Yu, G. X. and T. J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," Journal of Electromagnetic Waves and Applications, Vol. 21, 35-46, 2007.
doi:10.1163/156939307779391795

18. Li, Z. and T. J. Cui, "Sandwich-structure waveguides for very-high power generation and transmission using left-handed materials," Progress In Electromagnetics Research, Vol. 69, 101-116, 2007.
doi:10.2528/PIER06121001

19. Li, Z., T. J. Cui, and J. F. Zhang, "TM wave coupling for high power generation and transmission in parallel-plate waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, 947-961, 2007.
doi:10.1163/156939307780749039

20. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, and N. P. Yashina, "Surface resonances of metal stripe grating on the plane boundary of metamaterial," Progress In Electromagnetics Research, Vol. 63, 209-222, 2006.
doi:10.2528/PIER06052401

21. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602

22. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

23. Yao, H.-Y., L.-W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from micrsocopic 2-D isotropic cross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197-217, 2005.
doi:10.2528/PIER04020301