Vol. 6
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-09
Temporal Cavity Oscillations Caused by a Wide-Band Waveform
By
Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008
Abstract
Excitation of the electromagnetic fields by a wide-band current surge, which has a beginning in time, is studied in a cavity bounded by a closed perfectly conducting surface. The cavity is filled with Debye or Lorentz dispersive medium. The fields are presented as the modal expansion in terms of the solenoidal and irrotational cavity modes with the time-dependent modal amplitudes, which should be found. Completeness of this form of solution has been proved earlier. The systems of ordinary differential equations with time derivative for the modal amplitudes are derived and solved explicitly under the initial conditions and in compliance with the causality principle. The solutions are obtained in the form of simple convolution (with respect to time variable) integrals. Numerical examples are exhibited as well.
Citation
Oleg Tretyakov Fatih Erden , "Temporal Cavity Oscillations Caused by a Wide-Band Waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222
http://www.jpier.org/PIERB/pier.php?paper=08031222
References

1. Camp, M. and H. Garbe, "Susceptibility of personal computer systems to electromagnetic pulses with double exponential character," Advances in Radio Science, Vol. 2, 63-69, 2004.

2. Savic, M. S., "Estimation of the surge arrester outage rate caused by lightning overvoltages," IEEE Trans. on Power Delivery, Vol. 20, No. 1, 116-122, 2005.
doi:10.1109/TPWRD.2004.835435

3. Zhen, J., S. C. Hagness, J. H. Booske, S. Mathur, and M. L. Meltz, "FDTD analysis of a Gigahertz TEM cell for ultra-wideband pulse exposure studies of biological specimens," IEEE Trans. on Biomedical Eng., Vol. 53, No. 5, 780-789, 2006.
doi:10.1109/TBME.2005.863959

4. Camp, M. and H. Garbe, "Parameter estimation of double exponential pulses (EMP, UWB) with least squares and nelder mead algorithm," IEEE Trans. on EM Compatibility, Vol. 46, No. 4, 675-678, 2004.
doi:10.1109/TEMC.2004.838228

5. Tretyakov, O. A., Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, O. A. Tretyakov (eds.), Chapter 3, Science House Co., Ltd., 1993.

6. Tretyakov, O. A., Evolutionary equations for the theory of waveguides, Proc. IEEE AP-S Int. Symp. Dig., 2465-2471, Seattle, WA, 1994.

7. Aksoy, S. and O. A. Tretyakov, "Study of a time variant cavity system," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 11, 1535-1553, 2002.
doi:10.1163/156939302X00985

8. Aksoy, S. and O. A. Tretyakov, "Evolution equations for analytical study of digital signals in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 263-270, 2004.

9. Aksoy, S. and O. A. Tretyakov, "The evolution equations in study of the cavity oscillations excited by a digital signal," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 263-270, 2004.
doi:10.1109/TAP.2003.822399

10. Aksoy, S., M. Antyufeyeva, E. Basaran, A. A. Ergin, and O. A. Tretyakov, "Time-domain cavity oscillations supported by a temporally dispersive dielectric," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 8, 2465-2471, 2005.
doi:10.1109/TMTT.2005.852784

11. Weyl, H., "The method of orthogonal projection in potential theory," Duke Math. J., Vol. 7, 411-444, 1940.
doi:10.1215/S0012-7094-40-00725-6

12. http://math.fullerton.edu/mathews/n2003/matrixexponential/MatrixExponentialBib/Links/MatrixExponentialBib lnk 2.html.