Vol. 9
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-10-07
Using Genetic Algorithm to Reduce the Radar Cross Section of Three-Dimensional Anisotropic Impedance Object
By
Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008
Abstract
This paper focuses on the radar cross section (RCS) reduction for the three-dimensional object with anisotropic impedance coating. In this work, a genetic algorithm is adopted to optimize the RCS of the anisotropic impedance object in desired angle range. The surface impedances are considered as the optimized parameters and the scattering of the object is computed by the PO method. The optimization process is demonstrated by considering the RCS reduction of two typical targets: the cone and the cone/cylinder composite structure. It is found that the optimization process can reduce the RCS of the targets remarkably and the anisotropic impedance coating has better RCS reduced effect than the isotropic impedance coating.
Citation
Hai Chen, Guo-Qiang Zhu, and Si-Yuan He, "Using Genetic Algorithm to Reduce the Radar Cross Section of Three-Dimensional Anisotropic Impedance Object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202
References

1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

2. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402

3. Tao, Y. B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS," Prediction Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305

4. Xu, L., J. Tian, and X.-W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503

5. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with nurbs surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

6. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305

7. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "RCS computation of airplane using parabolic equation," Progress In Electromagnetics Research, Vol. 57, 265-276, 2006.
doi:10.2528/PIER05080101

8. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Scattering cross section for airborne and its application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2341-2349, 2007.
doi:10.1163/156939307783134254

9. Chen, X.-J. and X.-W. Shi, "Comments on a formula in radar cross section," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2389-2394, 2007.
doi:10.1163/156939307783134434

10. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic column covered by doublenegative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

11. Knott, E. F., et al. Radar Cross Section, Artech House, Inc., Dedham, MA, 1985.

12. Abd-El-Ranouf, H. E. and R. Mittra, "Scattering analysis of dielectric coated cones," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1857-1871, 2007.

13. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803

14. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedance," Mathematical Physics, Vol. 3, No. 4, 752-755, 1958.

15. Manara, G., P. Nepa, and G. Pelosi, "Electromagnetics scattering by a right angled anisotropic impedance wedge," Electronic Letters, Vol. 32, No. 13, 1179-1180, 1996.
doi:10.1049/el:19960802

16. Pelosi, G., G. Manara, and P. Nepa, "A UTD solution for the scattering by a wedge with anisotropic impedance face: Skew incidence case," IEEE Trans. Antennas and Propagat., Vol. 46, No. 4, 579-588, 1998.
doi:10.1109/8.664124

17. Yuan, F. and G. Q. Zhu, "Electromagnetic diffraction at skew incidence by a wedge with anisotropic impedance faces," Radio Science, Vol. 40, No. 6, 2005, RS6014.

18. Bilow, H. J., "Scattering by an infinite wedge with tensor impedance boundary conditions — A moment method/physical optics solution for the currents," IEEE Trans. Antennas and Propagat., Vol. 39, No. 7, 767-773, 1991.
doi:10.1109/8.86874

19. Gong, Z. Q., B. X. Xiao, G. Q. Zhu, and H. Y. Ke, "Improvements to the hybrid MM-PO technique for scattering of plane wave by an infinite wedge," IEEE Trans. Antennas and Propagat., Vol. 54, No. 1, 251-255, 2006.
doi:10.1109/TAP.2005.861511

20. Pelosi, G., G. Manara, and M. Fallai, "Physical optics expressions for the fields scattered from anisotropic impedance flat plates," Microwave and Optical Technology Letters, Vol. 14, No. 6, 316-318, 1997.
doi:10.1002/(SICI)1098-2760(19970420)14:6<316::AID-MOP2>3.0.CO;2-L

21. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas Propagat. Mag., Vol. 39, 7-21, Aug. 1997.
doi:10.1109/74.632992

22. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, 343-353, Mar. 1997.
doi:10.1109/8.558650

23. Michielssen, E., J. M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, 1024-1031, Jun./Jul. 1993.
doi:10.1109/22.238519

24. Weile, D. S., E. Michielssen, and D. E. Goldberg, "Genetic algorithm design of pareto optimal broad-band microwave absorbers," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 518-524, Aug. 1996.
doi:10.1109/15.536085

25. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, New York, 1999.

26. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1594-1606, Oct. 2000.
doi:10.1109/8.899676

27. Gordon, W. B., "Far-field approximations to the Kirchhoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propagat., Vol. 23, No. 5, 590-592, Jul. 1975.