Vol. 10
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-10-16
Study the Effects of Electromagnetic Band-Gap (EBG) Substrate on Two Patch Microstrip Antenna
By
Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008
Abstract
Utilization of electromagnetic band-gap (EBG) structures is becoming attractive in the electromagnetic and antenna community. In this paper, the effects of a two-dimensional electromagnetic bandgap (EBG) Structures on the performance of microstrip patch antenna arrays are investigated using the Ansoft High Frequency Selective Simulator (HFSSTM). A mushroom-like EBG structure is compared with 2-DEBG Structures. HFSSTM is employed to determine the effects of different Structures on two element microstrip patch antennas array. Two element microstrip patch antenna array on a uniform substrate suffer from strong mutual coupling due to the pronounced surface waves. Therefore, diverse forms of 2-DEBG Structures like: little number of holes, large number of holes, defect mode and different number of mushroom-patches columns structure are discussed. The two element microstrip patch antennas array placed on a defect in the electromagnetic (EBG) substrate that localizes the energy under the antennas. The excitation frequency of the two element microstrip patch antennas array near the resonance frequency of the defect mode can be used to control the coupling between antennas that are placed in an array. The mutual coupling improved by using large number of mushroom-patches columns structure.
Citation
Hanem F. Shaban, Hamdy A. Elmikaty, and Abdelhamid Shaalan, "Study the Effects of Electromagnetic Band-Gap (EBG) Substrate on Two Patch Microstrip Antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901
References

1. Agi, K., K. J., Malloy, E. Schamiloglu, M. Mojahedi, and E. Niver, "Integration of a microstrip patch antenna with a two-dimensional photonic crystal substrate," Electromagnetics, Vol. 19, 277-290, 1999.
doi:10.1080/02726349908908644

2. Parker, G. and M. Charlton, "Photonic crystals," Physics World, Vol. 13, 29-34, Aug. 2000.

3. Joannopoulos, J. D., R. D. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light , Princeton University Press, Princeton, N.J., 1995.

4. Yang, F. and Y. Rahmat-Samii, "Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate," Proc. IEEE AP-S Dig., Vol. 2, 482-485, July 2001.

5. Gonzalo, R., P. Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, 2131-2138, Nov. 1999.
doi:10.1109/22.798009

6. Radisic, V., Y. X. Qian, R. Coccioli, and T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave and Guided Wave Letters, Vol. 8, 69-71, 1998.
doi:10.1109/75.658644

7. Rumsey, I., M. Piket May, and P. K. Kelly, "Photonic bandgap structures used as filters in microstrip circuits," IEEE Microwave and Guided Wave Letters, Vol. 8, 336-338, 1998.
doi:10.1109/75.735413

8. Agi, K., L. D. Moreland, E. Schamiloglu, M. Mojahedi, K. J. Malloy, and E. R. Brown, "Photonic crystals: A new quasi-optical component for high-power microwaves," IEEE Transactions on Plasma Science, Vol. 24, 1067-1071, 1996.
doi:10.1109/27.533114

9. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, 185-187, 1997.
doi:10.1109/8.554261

10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

11. Yang, F. and Y. Rahmat Sami, "The effects of an electromagnetic bandgap (EBG) structure on two element microstrip patch antenna array," IEEE Transactions Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

12. Sievenpiper, D. F., "High-impedance electromagnetic surfaces ,", Ph.D. dissertation, UCLA, 1999.

13. Chang, C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetic Research, Vol. 41, 211-235, 2003.

14. Xu, H. J., Y. H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBC) structures," Progress In Electromagnetic Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

15. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe FED microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801