Vol. 12
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-01-08
Fast Analysis and Design of Frequency Selective Surface Using the Gmresr-FFT Method
By
Progress In Electromagnetics Research B, Vol. 12, 63-80, 2009
Abstract
In this paper, frequency selective surfaces (FSSs) are analyzed and designed. The analytical procedure is based on method of moments (MoM). The generalized minimal residual recursive method combined with fast Fourier transform (GMRESR-FFT) is utilized to accelerate the solution of the matrix equation. Our numerical results show that the GMRESR-FFT method can converge at least 3 times faster than the generalized minimal residual fast Fourier transform method (GMRES-FFT). In this paper, the cross dipoles are first used to design the FSS filter with a passband at 300 GHz and a stopband at 450 GHz, and then the Jerusalem cross slots are utilized to avoid grating lobes and improve the bandwidth of FSS. Numerical results demonstrate the validity and efficiency of the presented method.
Citation
Wei Zhuang, Zhenhong Fan, Da-Zhi Ding, and Yuyuan An, "Fast Analysis and Design of Frequency Selective Surface Using the Gmresr-FFT Method," Progress In Electromagnetics Research B, Vol. 12, 63-80, 2009.
doi:10.2528/PIERB08120406
References

1. Munk, B. A., Frequency Selective Surfaces Theory and Design, John Wiley & Sons, Inc., 2000.
doi:10.1002/0471723770

2. Schimert, T. R., A. J. Brouns, C. H. Chan, and R. Mittra, "Investigation of millimeter-wave scattering from frequency selective surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 39, 315-322, 1991.
doi:10.1109/22.102976

3. Shen, Z., N. Ito, E. Sakata, C. W. Domier, Y. Liang, N. C. Luhmann, Jr., and A. Mase, "Frequency selective surface notch filter for use in a millimeter wave imaging system," IEEE International Symposium on Antennas and Propagation, 4191-4194, 2006.
doi:10.1109/APS.2006.1711553

4. Biber, S., M. Bozzi, and O. Gunther, "Design and testing of frequency-selective surfaces on silicon substrates for submillimeter-wave applications," IEEE Trans. Antennas Propagat., Vol. 54, 2638-2645, 2006.
doi:10.1109/TAP.2006.880663

5. Wu, G., V. Hansen, E. Kreysa, and H. P. Gemuend, "Design and optimization of FSS structures for applications in (sub) millimeter astronomy using a PSO algorithm," IRMMW-THz 2006, 401, 2006.

6. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, PIER 70, 1-20, 2007.

7. Oraizi, H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM),", PIER 74, 217-240, 2007.

8. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer jerusalem cross FSS," Progress In Electromagnetics Research, PIER 64, 43-51, 2006.

9. Delihacioglu, K., S. Uckun, and T. Ege, "FSS comprised of one-and two-turn square spiral shaped conductors on dielectric slab," Progress In Electromagnetics Research B, Vol. 6, 81-92, 2008.
doi:10.2528/PIERB08031213

10. Wu, T. K., Frequency Selective Surface and Grid Array, John Wiley & Sons, Inc., 1995.

11. De Sturler, E., "Nest Krylov methods based on GCR," Journal of Computational and Applied Mathematics, Vol. 67, 15-41, 1996.
doi:10.1016/0377-0427(94)00123-5

12. Van der Vorst, H. A. and C. Vuik, "GMRESR: A family of nested GMRES methods," Num. Lin. Alg. Appl., Vol. 1, 369-386, 1994.
doi:10.1002/nla.1680010404

13. Rui, P. L. and R. S. Chen, "Robust GMRES recursive method for fast finite element analysis of 3-D electromagnetic problems," Microwave and Optical Technology Letters, Vol. 49, No. 5, 1010-1015, 2007.
doi:10.1002/mop.22333

14. Eisenstat, S. C., H. C. Elman, and M. H. Schultz, "Variational iterative methods for non-symmetric systems of linear equations," SIAM J. Numer. Anal., Vol. 20, 345-357, 1983.
doi:10.1137/0720023

15. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 7, 856-869, 1986.

16. Chen, R. S., D. X. Wang, and E. K. N. Yung, "Efficient analysis of millimeter wave ferrite circulators by GMRES iterative algorithm," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 7, 1199-1214, 2003.
doi:10.1023/A:1024777204159

17. Ping, X. W., R. S. Chen, K. F. Tsang, and E. K. N. Yung, "The SSOR-preconditioned inner outer flexible GMRES method for the FEM analysis of EM problems," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1708-1712, 2006.
doi:10.1002/mop.21758

18. Ding, D. Z., R. S. Chen, D. X. Wang, W. Zhuang, and E. K. N. Yung, "Application of the inner-outer flexible GMRESFET method to the analysis of scattering and radiation by cavitybacked patch antennas and arrays," International Journal of Electronics, Vol. 92, No. 11, 645-659, 2005.
doi:10.1080/00207210500171364

19. Chen, R. S., D. Z. Ding, Z. H. Fan, E. K. N. Yung, and C. H. Chan, "Flexible GMRES-FFT method for fast matrix solution: Application to 3D dielectric bodies electromagnetic scattering," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 17, No. 6, 523-537, 2004.
doi:10.1002/jnm.554

20. Mo, L., R. S. Chen, P. L. Rui, and X. P. Feng, "Fast analysis of microwave integrated circuits by use of the inner-outer flexible GMRES-FFT method ," Microwave and Optical Technology Letters, Vol. 43, No. 5, 409-413, 2004.
doi:10.1002/mop.20485

21. Chen, R. S., E. K. N. Yung, A. H. Yang, and C. H. Chan, "Application of preconditioned Krylov subspace iterative FFT techniques to method of lines for analysis of the infinite plane metallic grating," Microwave and Optical Technology Letters, Vol. 35, No. 2, 160-167, 2002.
doi:10.1002/mop.10546

22. Chen, R. S., E. K. N. Yung, C. H. Chan, and D. G. Fang, "Application of preconditioned CG-FFT technique to method of lines for analysis of the infinite plane metallic grating," Microwave and Optical Technology Letters, Vol. 24, No. 3, 170-175, 2000.
doi:10.1002/(SICI)1098-2760(20000205)24:3<170::AID-MOP8>3.0.CO;2-S

23. Chen, R. S., Z. H. Fan, and E. K. N. Yung, "Analysis of electromagnetic scattering of three-dimensional dielectric bodies using Krylov subspace FFT iterative methods," Microwave and Optical Technology Letters, Vol. 39, No. 4, 261-267, 2003.
doi:10.1002/mop.11186

24. Rui, P. L., R. S. Chen, Z. H. Fan, E. K. N. Yung, C. H. Chan, Z. Nie, and J. Hu, "Fast analysis of electromagnetic scattering of 3D dielectric bodies with augmented GMRES-FFT method," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3848-3852, 2005.
doi:10.1109/TAP.2005.858833

25. Rui, P. L., R. S. Chen, X. P. Feng, L. Mo, and E. K. N. Yung, "Fast analysis of microwave integrated circuits by use of the loose GMRES-FFT method," International Journal of RF and Microwave CAD Engineering, Vol. 15, No. 6, 578-586, 2005.
doi:10.1002/mmce.20101

26. Ding, D. Z., R. S. Chen, Z. H. Fan, E. K. N. Yung, and C. H. Chan, "Fast analysis of electromagnetic scattering of 3D dielectric bodiesby use of the loose GMRES-FFT method," International Journal of Electronics, Vol. 92, No. 7, 401-415, 2005.
doi:10.1080/00207210500031907

27. Chen, R. S., L. Mo, and E. K. N. Yung, "Multifrontal method preconditioned GMRES-FFT algorithm for fast analysis of microstrip circuits," International Journal for Computational and Mathematics in Electrical and Electronic Engineering, Vol. 24, No. 1, 94-106, 2005.
doi:10.1108/03321640510571075

28. Chen, R. S., X. W. Ping, E. K. N. Yung, C. H. Chan, et al. "Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite element analysis of Helmholtz equations," IEEE Trans. Antennas Propagat., Vol. 54, No. 5, 1604-1608, 2006.
doi:10.1109/TAP.2006.874358

29. Chen, R. S., X. W. Ping, and E. K. N. Yung, "SSOR preconditioned GMRES for the FEM analysis of waveguide discontinuities with anisotropic dielectric," International Journal of Numerical Modelling, Vol. 17, No. 2, 105-118, 2004.
doi:10.1002/jnm.526

30. Chen, R. S., E. K. N. Yung, C. H. Chan, and D. G. Fang, "Application of SSOR preconditioned conjugate gradient algorithm to edge-FEM for 3-dimensional full wave electromagnetic boundary value problems," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 4, 1165-1172, 2002.
doi:10.1109/22.993420

31. Chen, R. S., K. F. Tsang, and E. K. N. Yung, "Application of SSOR preconditioning technique to method of lines for millimeter wave scattering ," International Journal of Infrared and Millimeter Waves, Vol. 21, No. 8, 1281-1301, 2000.
doi:10.1023/A:1026452101058

32. Chen, R. S., K. F. Tsang, and E. K. N. Yung, "An effective multigrid preconditioned CG algorithm for millimeter wave scattering by an infinite plane metallic grating," nternational Journal of Infrared and Millimeter Waves, Vol. 21, No. 6, 945-963, 2000.
doi:10.1023/A:1026453819519

33. Chen, R. S., D. G. Fang, K. F. Tsang, and E. K. N. Yung, "Analysis of electromagnetic wave scattering by an electrically large metallic grating using wavelet-based algebratic multigrid preconditioned CG method," Progress In Electromagnetics Research, PIER 31, 89-112, 2001.

34. Huang, J., T. K.Wu, and S. W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

35. Ansoft, Designer, "User guide and example,", Ansoft Corporation, 225 West Square Suite 200, Pittsburgh, PA 15219-1119.