Vol. 12

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-01-12

Electromagnetic Transmission through Fractal Apertures in Infinite Conducting Screen

By Basudeb Ghosh, Sachendra N. Sinha, and Machavaram Kartikeyan
Progress In Electromagnetics Research B, Vol. 12, 105-138, 2009
doi:10.2528/PIERB08121005

Abstract

Fractals contain an infinite number of scaled copies of a starting geometry. Due to this fundamental property, they offer multiband characteristics and can be used for miniaturization of antenna structures. In this paper, electromagnetic transmission through fractal shaped apertures in an infinite conducting screen has been investigated for a number of fractal geometries like Sierpinski gasket, Sierpinski carpet, Koch curve, Hilbert Curve and Minkowski fractal. Equivalence principle and image theory are applied to obtain an operator equation in terms of equivalent surface magnetic current over the aperture surface. The operator equation is then solved using method of moments (MoM) with the aperture surface modeled using triangular patches. Numerical results are presented in terms of transmission coefficient and transmission cross-section for both parallel and perpendicular polarizations of incident plane wave which show the existence of multiple transmission bands.

Citation


Basudeb Ghosh, Sachendra N. Sinha, and Machavaram Kartikeyan, "Electromagnetic Transmission through Fractal Apertures in Infinite Conducting Screen," Progress In Electromagnetics Research B, Vol. 12, 105-138, 2009.
doi:10.2528/PIERB08121005
http://www.jpier.org/PIERB/pier.php?paper=08121005

References


    1. Rahmat-Samii, Y. and R. Mittra, "Electromagnetic coupling through small apertures in a conducting screen," IEEE Trans. Antennas Propagat., Vol. 25, 180-187, Mar. 1977.
    doi:10.1109/TAP.1977.1141554

    2. Sarkar, T. K., M. F. Costa, I. Chin-Lin, and R. F. Harrington, "Electromagnetic transmission through mesh covered apertures and aperture arrays of apertures in a conducting screen ," IEEE Trans. Antennas Propagat., Vol. 32, 908-913, Sept. 1984.
    doi:10.1109/TAP.1984.1143435

    3. Andersson, T., "Momen t-Method calculations on apertures using basis singular function," IEEE Trans. Antennas Propagat., Vol. 41, 1709-1716, Dec. 1993.
    doi:10.1109/8.273329

    4. Park, H. and H. J. Eom, "Electromagnetic scattering from multiple rectangular apertures in a thick conducting screen," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1056-1060, June 1999.
    doi:10.1109/8.777131

    5. Park, Y. B. and H. J. Eom, "Electromagnetic transmission through multiple circular apertures in a thick conducting plane," IEEE Trans. Antennas Propagat., Vol. 52, No. 4, 1049-1055, Apr. 2004.
    doi:10.1109/TAP.2004.825679

    6. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Tech., Vol. 21, 1-6, Jan. 1973.
    doi:10.1109/TMTT.1973.1127906

    7. Werner, D. H. and R. Mittra (eds.), Frontiers in Electromagnetics, Chapter 1–3,Piscat away,N J, IEEE Press,2000.

    8. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propagat., Vol. 48, 1097-1105, July 2000.

    9. Gianvittorio, J. P., J. Romeu, S. Blanch, and Y. Rahmat-Samii, "Self-similar prefractal frequency selective surfaces for multiband and dual polarized applications," IEEE Trans. Antennas Propagat., Vol. 51, 3088-3096, Nov. 2003.

    10. McVay, J., N. Engheta, and A. Hoorfar, "High impedance metamaterial surfaces using Hilbert curve inclusions," IEEE Microwave and Wireless Components Letters, Vol. 14, 130-132, Mar. 2004.
    doi:10.1109/LMWC.2003.822571

    11. Wen, W., L. Zhou, J. Li, W. Ge, and C. T. Chan P. Sheng, "Subwavelength photonic band gaps from planar fractals," Physical Review Lett., Vol. 89, No. 22, 223901, Nov. 2002.
    doi:10.1103/PhysRevLett.89.223901

    12. Zhou, L., C. T. Chan, and P. Sheng, "Theoritical studies on the transmission and reflection properties of metallic planar fractals," J. Phys. D: Applied Phys., Vol. 37, 368-373, 2004.
    doi:10.1088/0022-3727/37/3/009

    13. Hou, B., G. Xu, and W. Wen, "Tunable band gap properties of planar metallic fractals," J. Appl. Phys., Vol. 95, No. 6, 3231-3233, Mar. 2004.
    doi:10.1063/1.1647266

    14. Wen, W., L. Zhou, B. Hou, C. T. Chan, and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate," Physical Review B72, 153406, 2005.

    15. Harrington, R. F. and J. R. Mautz, "A generalized network formulation for aperture problems," IEEE Trans. Antennas Propagat., Vol. 24, 870-873, Nov. 1976.
    doi:10.1109/TAP.1976.1141420

    16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
    doi:10.1109/TAP.1982.1142818

    17. Chin-Lin, I. and R. F. Harrington, "Electromagnetic transmission through an aperture of arbitrary shape in a conducting screen,", Tech Rep-82-5 on Contract N00014-76-C-0025, Syracuse Univ., Apr. 1982.

    18. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, 276-281, Mar. 1984.
    doi:10.1109/TAP.1984.1143304

    19. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, 1448-1455, Oct. 1993.

    20. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., Vol. 43, 1499-1502, Dec. 1995.
    doi:10.1109/8.475946

    21. Rossi, L. and P. J. Cullen, "On the fully numerical evaluation of the linear shape function times 3D Green's function on a plane triangle," IEEE Trans. Microwave Theory Tech., Vol. 47, 398-402, Apr. 1999.
    doi:10.1109/22.754871

    22. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propagat., Vol. 53, 3180-3190, Oct. 2005.

    23. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractals, New Frontiers in Science, Springer-V erlag, New York, 1992.

    24. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propagat., Vol. 46, 517-524, Apr. 1998.
    doi:10.1109/8.664115

    25. Baliarda, C. P., C. B. Borau, M. N. Rodero, and J. Romeu, "An iterative model for fractal antennas: Application to the Sierpinski gasket antenna," IEEE Trans. Antennas Propagat., Vol. 48, 713-719, May 2000.
    doi:10.1109/8.855489

    26. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Trans. Antennas Propagat., Vol. 51, 2296-2303, Sept. 2003.
    doi:10.1109/TAP.2003.816352

    27. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications," Microwave and Optical Technology Letters, Vol. 29, 215-219, 2001.
    doi:10.1002/mop.1136

    28. Ataeiseresht, R., C. Ghobadi, and J. Nourinia, "A novel analysis of Minkowski fractal microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1115-1127, 2006.
    doi:10.1163/156939306776930268