Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-02-09

Magnetic Field Produced by a Tile Permanent Magnet Whose Polarization Is Both Uniform and Tangential

By Romain Ravaud, Guy Lemarquand, Valerie Lemarquand, and Claude Depollier
Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009
doi:10.2528/PIERB08121901

Abstract

This paper presents the exact 3D calculation of the magnetic field produced by a tile permanent magnet whose polarization is both tangential and uniform. Such a calculation is useful for optimizing magnetic couplings or for calculating the magnetic field produced by alternate magnet structures. For example, our 3D expressions can be used for calculating the magnetic field produced by a Halbach structure. All our expressions are determined by using the coulombian model. This exact analytical approach has always proved its accuracy and its usefulness. As a consequence, the tile permanent magnet considered is represented by using the fictitious magnetic pole densities that are located on the faces of the magnet. In addition, no simplifying assumptions are taken into account for calculating the three magnetic field components. Moreover, it is emphasized that the magnetic field expressions are fully three-dimensional. Consequently, the expressions obtained are valid inside and outside of the tile permanent magnet, whatever its dimensions. Such an approach allows us to realize easily parametric studies.

Citation


Romain Ravaud, Guy Lemarquand, Valerie Lemarquand, and Claude Depollier, "Magnetic Field Produced by a Tile Permanent Magnet Whose Polarization Is Both Uniform and Tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901
http://www.jpier.org/PIERB/pier.php?paper=08121901

References


    1. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Improvement of the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research, PIER 88, 307-319, 2008.

    2. Babic, S. and C. Akyel, "Improvement of the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

    3. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

    4. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
    doi:10.1109/TMAG.2008.923096

    5. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
    doi:10.2528/PIERB08112102

    6. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
    doi:10.1109/TMAG.2007.902995

    7. Azzerboni, B. and G. Saraceno, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
    doi:10.1109/20.717601

    8. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
    doi:10.1109/20.280997

    9. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, "Magnetic field evaluation for thick annular conductors," IEEE Trans. Magn., Vol. 29, No. 3, 2090-2094, 1993.
    doi:10.1109/20.211324

    10. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using colombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
    doi:10.1109/TMAG.2007.892316

    11. Durand, E., Electrostatique, Vol. 1, 248-251, Masson Editeur, Paris, France, 1964.

    12. Babic, S. and C. Akyel, "Magnetic force calculation between thin coaxial circular coils in air," IEEE Trans. Magn., Vol. 44, No. 4, 445-452, 2008.
    doi:10.1109/TMAG.2007.915292

    13. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: Filamentary circular coilmassive circular solenoid ," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
    doi:10.1109/TMAG.2003.810550

    14. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
    doi:10.1109/20.996131

    15. Babic, S., S. Salon, and C. Akyel, "The mutual inductance of two thin coaxial disk coils in air," IEEE Trans. Magn., Vol. 40, No. 2, 822-825, 2004.
    doi:10.1109/TMAG.2004.824810

    16. Conway, J., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 10, 453-462, 2008.
    doi:10.1109/TMAG.2008.917128

    17. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensional field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
    doi:10.1109/20.364587

    18. Furlani, E. P., "Field analysis and optimization of NDFEB axial field permanent magnet motors ," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
    doi:10.1109/20.619603

    19. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 1, 2322-2325, 1997.
    doi:10.1109/20.573849

    20. Furlani, E. P., "A two-dimensional analysis for the coupling of magnetic gears," IEEE Trans. Magn., Vol. 33, No. 3, 2317-2321, 1997.
    doi:10.1109/20.573848

    21. Mayergoyz, D. and E. P. Furlani, "The Computation of magnetic fields of permanent magnet cylinders used in the electrophotographic process," J. Appl. Phys., Vol. 73, No. 10, 5440-5442, 1993.
    doi:10.1063/1.353709

    22. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
    doi:10.1109/TMAG.1978.1060019

    23. Abele, M., J. Jensen, and H. Rusinek, "Generation of uniform high fields with magnetized wedges," IEEE Trans. Magn., Vol. 33, No. 5, 3874-3876, 1997.
    doi:10.1109/20.619600

    24. Aydin, M., Z. Zhu, T. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Trans. Magn., Vol. 43, No. 9, 3614-3622, 2007.
    doi:10.1109/TMAG.2007.902818

    25. Marinescu, M. and N. Marinescu, "Compensation of anisotropy effects in flux-confining permanent-magnet structures," IEEE Trans. Magn., Vol. 25, No. 5, 3899-3901, 1989.
    doi:10.1109/20.42470

    26. Akoun, G. and J. P. Yonnet, "3d analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
    doi:10.1109/TMAG.1984.1063554

    27. Yong, L., Z. Jibin, and L. Yongping, "Optimum design of magnet shape in permanent-magnet synchronous motors," IEEE Trans. Magn., Vol. 39, No. 11, 3523-420, 2003.
    doi:10.1109/TMAG.2003.819462

    28. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE. Trans. Magn., Vol. 26, No. 5, 2041-2043, 1990.
    doi:10.1109/20.104612

    29. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
    doi:10.1109/TMAG.1981.1061166

    30. Zhu, Z. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Trans. Magn., Vol. 28, No. 2, 1371-1374, 1992.
    doi:10.1109/20.123947

    31. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
    doi:10.1049/ip-epa:20010512

    32. Yonnet, J. P., Rare-earth Iron Permanent Magnets, Ch. Magnetomechanical devices, Oxford Science Publications, 1996.

    33. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
    doi:10.1109/20.179441

    34. Halbach, K., "Design of permanent multiple magnets with oriented rec material," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
    doi:10.1016/0029-554X(80)90094-4

    35. http://www.univ-lemans.fr/∼glemar, .