Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-03-04

Relativistic Laguerre Polynomials and Splash Pulses

By Amalia Torre
Progress In Electromagnetics Research B, Vol. 13, 329-356, 2009
doi:10.2528/PIERB08122210

Abstract

New solutions of the homogeneous wave equation of the type usually referred to as relatively undistorted waves are presented. Such solutions relate to the so-called "splash modes", from which indeed they can be generated by applying the Laguerre polynomial operator. Accordingly, the solutions here presented resort to the relativistic Laguerre polynomials --- introduced about one decade ago within a purely mathematical context --- which in fact appear as modulating factor of the basic "splash mode" waveform. Similar solutions of the homogeneous spinor wave equation are also suggested.

Citation


Amalia Torre, "Relativistic Laguerre Polynomials and Splash Pulses," Progress In Electromagnetics Research B, Vol. 13, 329-356, 2009.
doi:10.2528/PIERB08122210
http://www.jpier.org/PIERB/pier.php?paper=08122210

References


    1. Brittingham, J. N., "Packetlike solutions of the homogeneous-wave equation," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
    doi:10.1063/1.332196

    2. Kiselev, A. P., "Modulated Gaussian beams," Radiophys. Quantum Electron., Vol. 26, 755-761, 1983.
    doi:10.1007/BF01034890

    3. Belanger, P. A., "Packetlike solutions of the homogeneous-wave equation," JOSA A, Vol. 1, 723-724, 1984.
    doi:10.1364/JOSAA.1.000723

    4. Sezginer, A., "A general formulation of focus wave modes," J. Appl. Phys., Vol. 57, 678-683, 1985.
    doi:10.1063/1.334712

    5. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1985.
    doi:10.1063/1.526579

    6. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
    doi:10.1103/PhysRevA.39.2005

    7. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Localized wave representations of acoustic and electromagnetic radiation," Proc. IEEE, Vol. 79, 1371-1378, 1991.
    doi:10.1109/5.104212

    8. Bandres, M. A. and J. C. Gutierrez-Vega, "Cartesian beams," Opt. Lett., Vol. 32, 3459-3461, 2007.
    doi:10.1364/OL.32.003459

    9. Bandres, M. A. and J. C. Gutierrez-Vega, "Circular beams," Opt. Lett., Vol. 33, 177-179, 2008.
    doi:10.1364/OL.33.000177

    10. Torre, A., "A note on the general solution of the paraxial wave equation: A Lie algebra view ," J. Opt. A: Pure Appl. Opt., Vol. 10, 055006, 2008.
    doi:10.1088/1464-4258/10/5/055006

    11. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
    doi:10.1063/1.528301

    12. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations, Dover, New York, 1955.

    13. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, New York, 1962.

    14. Hillion, P., "Electromagnetic inhomogeneous pulses," Journal of Electromagnetic Waves and Applications, Vol. 5, 959-969, 1991.

    15. Hillion, P., "Nondispersive waves: Interpretation and causality," IEEE Trans. Ant. Propag., Vol. 40, 1031-1035, 1992.
    doi:10.1109/8.166527

    16. Hillion, P., "Generalized phases and nondispersive waves," Acta Appl. Math., Vol. 30, 35-45, 1993.
    doi:10.1007/BF00993341

    17. Kiselev, A. P. and M. V. Perel, "Highly localized solutions of the wave equations," J. Math. Phys., Vol. 41, 1934-1955, 2000.
    doi:10.1063/1.533219

    18. Kiselev, A. P., "Relatively undistorted waves. New examples," J. Math. Sci., Vol. 117, 3945-3946, 2003.
    doi:10.1023/A:1024666808547

    19. Kiselev, A. P., "Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions of the wave equation via a separation of variables," J. Phys. A: Math. Gen., Vol. 36, L345-L349, 2003.
    doi:10.1088/0305-4470/36/23/103

    20. Kiselev, A. P., "Relatively undistorted cylindrical waves, depending on three spatial variables," Math. Notes, Vol. 79, 587-588, 2006.
    doi:10.1007/s11006-006-0066-y

    21. Kiselev, A. P., "Localized light waves: Paraxial and exact solutions of the wave equation (a review)," Opt. & Spectr., Vol. 102, 603-622, 2007.
    doi:10.1134/S0030400X07040200

    22. Hillion, P., "Splash wave modes in homogeneous Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 2, 725-739, 1988.

    23. Besieris, I. M., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions to the scalar wave equation," Prog. Electrom. Res., Vol. 19, 1-48, 1998.
    doi:10.2528/PIER97072900

    24. Hillion, P., "Spinor focus wave modes," J. Math. Phys., Vol. 28, 1743-1748, 1987.
    doi:10.1063/1.527484

    25. Shaarawi, A. M., M. A. Maged, I. M. Besieris, and E. Hashish, "Localized pulses exhibiting a missilelike slow decay," JOSA, Vol. 23, 2039-2052, 2006.
    doi:10.1364/JOSAA.23.002039

    26. Natalini, P., "The relativistic Laguerre polynomials," Rend. Matematica, Ser. VII, Vol. 16, 299-313, 1996.

    27. Aldaya, V., J. Bisquert, and J. Navarro-Salas, "The quantum relativistic harmonic oscillator: generalized Hermite polynomials," Phys. Lett. A, Vol. 156, 381-385, 1991.
    doi:10.1016/0375-9601(91)90711-G

    28. Torre, A., W. A. B. Evans, O. El Gawhary, and S. Severini, "Relativisitic Hermite polynomials and Lorentz beams," J. Opt. A: Pure Appl. Opt., Vol. 10, 115007, 2008.
    doi:10.1088/1464-4258/10/11/115007

    29. Mourad, E. and H. Ismail, "Relativistic orthogonal polynomials are Jacobi polynomials," J. Phys. A: Math. Gen., Vol. 29, 3199-3202, 1996.
    doi:10.1088/0305-4470/29/12/023

    30. Volterra, V., "Sur les vibrations des corps elastiques isotropes," Acta Math., Vol. 18, 161-232, 1894.
    doi:10.1007/BF02418279

    31. Miller, W., Symmetry and Separation of Variables, Addison-Wesley, Reading, MA, 1977.

    32. Hillion, P., "The Courant-Hilbert solution of the wave equation," J. Math. Phys., Vol. 33, 2749-2753, 1992.
    doi:10.1063/1.529595

    33. Erdelyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vols. 1 and 2, MacGraw-Hill, New York, London and Toronto, 1953.

    34. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1965.

    35. Stratton, J. A., "Electromagnetic Theory," McGraw-Hill, 1941.

    36. Essex, E. A., "Hertz vector potentials of electromagnetic theory," Amer. J. Phys., Vol. 54, 1099-1101, 1977.
    doi:10.1119/1.10955

    37. Hillion, P., "More on focus wave modes in Maxwell equations," J. Appl. Phys., Vol. 60, 2981-2982, 1986.
    doi:10.1063/1.337773

    38. Hillion, P., "The Bateman solutions of the spinor wave equation," Mod. Phys. Lett. A, Vol. 8, 2111-2115, 1993.
    doi:10.1142/S0217732393001823

    39. Wu, T. T., "Electromagnetic missiles," J. Appl. Phys., Vol. 57, 2370-2373, 1985.
    doi:10.1063/1.335465

    40. Shen, H. M and T. T.Wu, "The properties of the electromagnetic missile," J. Appl. Phys., Vol. 66, 4025-4034, 1989.
    doi:10.1063/1.344011

    41. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realizations of exact solutions to homogeneous-wave equations," JOSA A, Vol. 10, 75-87, 1993.
    doi:10.1364/JOSAA.10.000075

    42. Abdel-Rahman, M., I. M. Besieris, and A. M. Shaarawi, "A comparative study on the reconstruction of localized pulses," Proc. IEEE Southeast Conf. (SOUTHEASTCON'97), 113-117, Blackburg, Virginia, April 1997. also at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00598622.