Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Dielectric Resonator-Based Route to Left-Handed Metamaterials

By Jiafu Wang, Shaobo Qu, Hua Ma, Junhua Hu, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao
Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009


In this paper, a new route for the realization of left-handed metamaterials (LHMs) is suggested. It is based on commercially available dielectric resonators with low loss and high temperature stability. By etching simple metallic strips on surface of dielectric resonators, the desired resonance modes can be enhanced while the undesired suppressed. In this way, resonance frequency of desired resonance modes can be tuned to the frequency range of interest. As a typical example, a wide-angle polarization-independent planar LHM based on disk-like dielectric resonators is proposed. Negative permeability and permittivity are realized by etching metallic strips along the electric field orientations of TE01δ and HEM11δ modes, respectively.


Jiafu Wang, Shaobo Qu, Hua Ma, Junhua Hu, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao, "A Dielectric Resonator-Based Route to Left-Handed Metamaterials," Progress In Electromagnetics Research B, Vol. 13, 133-150, 2009.


    1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.

    2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.

    3. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, PIER 84, 279-287, 2008.

    4. Ranc, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress in Electromagnetics Research, PIER 51, 249-279, 2005.

    5. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and C. Gu, "A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators," Photon Nanostruct.: Fundam Appl., Vol. 6, 183, 2008.

    6. Zhou, J. F., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, 041101, 2006.

    7. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.

    8. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics Nanostruct.: Fundam. Appl, Vol. 6, 102-107, 2008.

    9. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: the fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.

    10. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A: Pure Appl. Opt., Vol. 9, 361-365, 2007.

    11. Zhou, J. F., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phys. Lett., Vol. 88, 221103, 2006.

    12. Wang, J. F., S. B. Qu, Z. X, J. Q. Zhang, H. Ma, Y. M. Yang, and C. Gu, "Broadband planar left-handed metamaterials using split-ring resonator pairs," Photon Nanostruct.: Fundam Appl., Vol. 7, 2009 (accepted).

    13. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2596-2603, 2003.

    14. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.

    15. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.

    16. Popa, B. I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.

    17. Peng, L., L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.

    18. Lepetit, T. and E. Akmansoy, "dielectric photonic crystals dielectric photonic crystals," Microwave Opt. Tech. Lett., Vol. 50, 909-911, 2008.

    19. JylhÄa, L., I. Kolmakov, S. Maslovski, and S. Tretyakova, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 2006.

    20. Kajfez, D. and P. Guillon, , Noble Publishing Corp., Georgia, 1998.

    21. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.

    22. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.

    23. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E, Vol. 68, 065602, 2003.