Vol. 13

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-03-05

Analytical Expression of the Magnetic Field Created by Tile Permanent Magnets Tangentially Magnetized and Radials Current in Massive Disks

By Romain Ravaud and Guy Lemarquand
Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009
doi:10.2528/PIERB09012704

Abstract

In this paper, we present new expressions for calculating the magnetic field produced by either tile permanent magnets tangentially magnetized or by radial currents in massive disks. These expressions are fully analytical, that is, we do not use any special functions for calculating them. In addition, they are three-dimensional and can be used for calculating the magnetic field for all regular points in space. The expressions commonly used for calculating the magnetic field produced by radial currents in massive disks are often based on elliptic integrals or semi-analytical forms. We propose in this paper an alternative analytical method that can also be used for tile permanent magnets. Indeed, by using the analogy between the coulombian model and the amperian current model, radial currents in massive disks can be represented by using the fictitious magnetic pole densities that are located on two faces of a tile permanent magnet tangentially magnetized. The two representations are equivalent and thus, the shape of magnetic field produced is the same for all points in space, with a smaller value in the case of it is produced by radial currents in massive disks. Such expressions can be used for realizing easily parametric studies.

Citation


Romain Ravaud and Guy Lemarquand, "Analytical Expression of the Magnetic Field Created by Tile Permanent Magnets Tangentially Magnetized and Radials Current in Massive Disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009.
doi:10.2528/PIERB09012704
http://www.jpier.org/PIERB/pier.php?paper=09012704

References


    1. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
    doi:10.1109/20.996131

    2. Babic, S. and M. M. Gavrilovic, "New expression for calculating magnetic fields due to current-carrying solid conductors," IEEE Trans. Magn., Vol. 33, No. 5, 4134-4136, 1997.
    doi:10.1109/20.619687

    3. Babic, S. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

    4. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
    doi:10.1109/TMAG.2008.923096

    5. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, PIER 88, 307-319, 2008.

    6. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
    doi:10.2528/PIERB08112102

    7. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
    doi:10.1109/20.280997

    8. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, "Magnetic field evaluation for thick annular conductors," IEEE Trans. Magn., Vol. 29, No. 3, 2090-2094, 1993.
    doi:10.1109/20.211324

    9. Azzerboni, B. and G. Saraceno, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
    doi:10.1109/20.717601

    10. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

    11. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
    doi:10.1109/20.364587

    12. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, 1997.
    doi:10.1109/20.573849

    13. Furlani, E. P., "A two-dimensional analysis for the coupling of magnetic gears," IEEE Trans. Magn., Vol. 33, No. 3, 2317-2321, 1997.
    doi:10.1109/20.573848

    14. Furlani, E. P., "Field analysis and optimization of ndfeb axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
    doi:10.1109/20.619603

    15. Mayergoyz, D. and E. P. Furlani, "The computation of magnetic fields of permanent magnet cylinders used in the electrophotographic process," J. Appl. Phys., Vol. 73, No. 10, 5440-5442, 1993.
    doi:10.1063/1.353709

    16. Elies, P. and G. Lemarquand, "Analytical optimization of the torque of a permanent-magnet coaxial synchronous coupling," IEEE Trans. Magn., Vol. 34, No. 4, 2267-2273, 1998.
    doi:10.1109/20.703865

    17. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
    doi:10.1109/20.799068

    18. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002.

    19. Babic, S. and C. Akyel, "An improvement in the calculation of the magetic field for an arbitrary geometry coil with rectangular cross section," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 493-504, November 2005.

    20. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: filamentary circular coilmassive circular solenoid," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
    doi:10.1109/TMAG.2003.810550

    21. Babic, S., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3d linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
    doi:10.1109/20.908707

    22. Selvaggi, J. P., S. Salon, O. M. Kwon, M. V. K. Chari, and M. DeBortoli, "Computation of the external magnetic field, near-field or far-field from a circular cylindrical magnetic source using toroidal functions," IEEE Trans. Magn., Vol. 43, No. 4, 1153-1156, 2007.
    doi:10.1109/TMAG.2007.892275

    23. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
    doi:10.1109/TMAG.2007.902995

    24. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
    doi:10.1109/TMAG.2004.831653

    25. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Ironless loudspeakers with ferrofluid seals," Archives of Acoustics, Vol. 33, No. 4, 3-10, 2008.

    26. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
    doi:10.1049/ip-epa:20010512

    27. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
    doi:10.1109/TMAG.1981.1061166

    28. Zhu, Z., G. W. Jewell, and D. Howe, "Design considerations for permanent magnet polarised electromagnetically actuated brakes," IEEE Trans. Magn., Vol. 31, No. 6, 3743-3745, 1995.
    doi:10.1109/20.489757

    29. Abele, M., J. Jensen, and H. Rusinek, "Generation of uniform high fields with magnetized wedges," IEEE Trans. Magn., Vol. 33, No. 5, 3874-3876, 1997.
    doi:10.1109/20.619600

    30. Baran, W. and M. Knorr, "Synchronous couplings with sm co5 magnets," 2nd Int. Workshop on Rare-Earth Cobalt Permanent Magnets and Their Applications, 140-151, Dayton, Ohio, USA, 1976.

    31. Remy, M., G. Lemarquand, B. Castagnede, and G. Guyader, "Ironless and leakage free voice-coil motor made of bonded magnets," IEEE Trans. Magn., Vol. 44, No. 11, 2008.
    doi:10.1109/TMAG.2008.2003401

    32. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, 2001.
    doi:10.1109/20.917185

    33. Blache, C. and G. Lemarquand, "High magnetic field gradients in flux confining permanent magnet structures," Journal of Magnetism and Magnetic Materials, Vol. 104, 1111-1112, 1992.
    doi:10.1016/0304-8853(92)90510-U

    34. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
    doi:10.1109/20.179441

    35. Charpentier, J. F. and G. Lemarquand, "Optimization of unconventional p.m. couplings," IEEE Trans. Magn., Vol. 38, No. 2, 1093-1096, 2002.
    doi:10.1109/20.996280

    36. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
    doi:10.1109/TMAG.2007.897739