Vol. 14

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-04-28

More Efficiency of Transverse Wave Approach (Twa) by Applying Anisotropic Mesh Technique (Amt) for Full-Wave Analysis of Microwave Planar Structures

By Mohamed Ayari, Taoufik Aguili, and Henri Baudrand
Progress In Electromagnetics Research B, Vol. 14, 383-405, 2009
doi:10.2528/PIERB09022001

Abstract

The present paper sets out to present a numerical electromagnetic (EM) method TWA for EM field modeling of planar structures. Combining both the benefits of TWA process and the modeling of planar excitation source, an optimization technique AMT is applied and evaluated in context of RF integratedcircuit applications. The computational complexity of TWA process is examined and the obtained simulation results are found to be in good agreement with literature.

Citation


Mohamed Ayari, Taoufik Aguili, and Henri Baudrand, "More Efficiency of Transverse Wave Approach (Twa) by Applying Anisotropic Mesh Technique (Amt) for Full-Wave Analysis of Microwave Planar Structures," Progress In Electromagnetics Research B, Vol. 14, 383-405, 2009.
doi:10.2528/PIERB09022001
http://www.jpier.org/PIERB/pier.php?paper=09022001

References


    1. Liu, X., B.-Z.Wang, and S. Lai, "Element-free Galerkin method in electromagnetic scattering field computation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1915-1923, 2007.
    doi:10.1163/156939307783152920

    2. Warnick, K. F., "An intuitive error analysis for FDTD and comparison to MoM," IEEE Antenna and Propagation Magazine, Vol. 47, 111-115, Dec. 2005.
    doi:10.1109/MAP.2005.1608751

    3. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements — A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
    doi:10.2528/PIER03010901

    4. Booton, R. C., Computational Methods for Electromagnetics and Microwaves, John Wiley & Sons, New York, 1992.

    5. Yamashita, E., Analysis method for EM Wave Problems, Artech House, Boston, London, 1990.

    6. Warnick, K. F. and W. C. Chew, "Error analysis of MoM," IEEE Antenna and Propagation Magazine, Vol. 46, 38-53.

    7. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
    doi:10.2528/PIER07122502

    8. Wang, J. J., Generalized MoM in Electromagnetics, John Wiley& Sons, New York, 1991.

    9. Papakanellos, P. J., "Accuracy and complexity assessment of subdomain moment methods for arrays of thin-wire loops," Progress In Electromagnetics Research, Vol. 78, 1-15, 2008.
    doi:10.2528/PIER07071704

    10. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain composition method," Journal of Electromagnetic Waves and Applications, Vol. 22, 251-266, 2008.
    doi:10.1163/156939308784160668

    11. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 07, 57-110, 1993.

    12. Itoh, T., Numerical techniques for Microwave and Millimeter-Wave Passive Structures, John Wiley & Sons, New York, 1989.

    13. Davidson, D. B., Computational Electromagnetics, Cambridge University Press, Cambridge, 2005.

    14. Ayari, M., T. Aguili, H. Temimi, and H. Baudrand, "An extended version of Transverse Wave Approach (TWA) for fullwave investigation of planar structures," Journal of Microwave, Optoelectronics and Electromagnetic Applications, Vol. 7, No. 2, Dec. 2008.

    15. Wane, S., D. Bajon, and H. Baudrand, "Full-wave analysis of inhomogeneous deep-trench isolation patterning for substrate coupling reduction and Q-factor improvement," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, Dec. 2006.
    doi:10.1109/TMTT.2006.885579

    16. Wane, S., D. Bajon, and H. Baudrand, "“A new full-wave hybrid differential-integral approach for the investigation of multilayer structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, Jan. 2005.
    doi:10.1109/TMTT.2004.839905

    17. Taillardat, Ph., H. Aubert, and H. Baudrand, "A combination of quasi-static approach with an integral method for the characterisation of microwave planar circuits," IEEE Symp. MTTS, Vol. 1, 17-420, San Diego, May 1994.

    18. Horng, T. S., W. E. McKinzie, and N. G. Alexopoulos, "Fullwave spectral domain analysis of compensation of microstrip discontinuities using triangular sub-domain functions," IEEE Trans. MTT, Vol. 40, No. 12, 2137-2148, Dec. 1992.
    doi:10.1109/22.179874

    19. Khan, R. L. and G. I. Costache, "Finite element method applied to modeling crosstalk problems on printed circuits boards ," IEEE Trans. Elect. Comp., Vol. 31, 5-15, Feb. 1989.
    doi:10.1109/15.19902

    20. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
    doi:10.2528/PIER06071301

    21. Manzanares-Martınez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive of the relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
    doi:10.1163/156939307783134452

    22. Schlager, K. L., "“Relative accuracy of several finite-difference time domain methods in two and three dimensions," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 12, 1732-1737, Dec. 1993.
    doi:10.1109/8.273296

    23. Gao, S., L.-W. Li, and A. Sambell, "FDTD analysis of a dualfrequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
    doi:10.2528/PIER04120102

    24. Faghihi, F. and H. Heydari, "A combination of time domain finite element-bofor calculation of electromagnetic scattering of 3-D structuresundary integral and with time domain physical optics ," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
    doi:10.2528/PIER07110206

    25. Hoefer, W. J. R., "The TLM-method: Theory and applications," IEEE Trans. Microwave Theory and Tech., Vol. 33, No. 10, 882-893, Oct. 1985.
    doi:10.1109/TMTT.1985.1133146

    26. Wienner, M., Electromagnetic analysis using Transmission Line, World Scientific, New Jersey, 2001.

    27. Russer, P., "The transmission line matrix method," Applied Computational Methods, NATO ASI series, 243-269, Springer, London, 2000.

    28. Christopoulos, C. and P. Russer, "Application of TLM to EM problems," Applied Computational Electromagnetic, NATO ASI Series, 324-350, Springer, New York, 2000.

    29. Pregla, R. and L. Vietzorreck, "Combination of the source method with absorbing boundary conditions in the method of lines," IEEE Micro. Guided Wave Lett., Vol. 5, 227-229.

    30. Dreher, A. and T. Rother, "New aspects of the method of lines," IEEE Micro. Guided Wave Lett., Vol. 5, 408-410, Nov. 1995.

    31. Helfert, S. F., "Applying oblique coordinates in the method of lines," Progress In Electromagnetics Research, Vol. 61, 271-278, 2006.
    doi:10.2528/PIER06041204

    32. Preglas, R., "MOL-BPM method of lines based beam propagation method," Progress In Electromagnetics Research, Vol. 11, 51-102, 1995.

    33. Ney, M. M., "Method of moments as applied to electromagnetics problems," IEEE Trans. Microwave Theory Tech., Vol. 33, 972-980, Oct. 1985.
    doi:10.1109/TMTT.1985.1133158

    34. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

    35. Grayaa, K., N. Hamdi, T. Aguili, and A. Bouallegue, "Fullwave analysis of shielded planar circuits using different models of sources," IEE Proc.--- Micro. Antennas Prop., Vol. 150, 258-264, Aug. 2003.
    doi:10.1049/ip-map:20030457

    36. Alsunaidi, M. A., S. M. Simtiaz, and S. A. Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time domain model," IEEE Trans. MTT, Vol. 44, No. 6, 799-808, Jun. 1996.
    doi:10.1109/22.506437

    37. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulation of electromagnetic problems," International Journal of Numerical Modeling, Vol. 15, 23-57, Jan. 2002.
    doi:10.1002/jnm.430

    38. Pujol, S., H. Baudrand, V. F. Hanna, and X. Dong, "A new approach of the source method for characterization of planar structures," EuMC, 1015-1020, 1991.

    39. Bajon, D. and H. Baudrand, "Application of wave concept iterative Procedure (WCIP) to Planar circuits," Microtec'2000, 864-868, Hanover, Sep. 2000.

    40. Krokhin, A. A., I. B. Snapiro, and V. A. Yampol'skij, "Nonlinear voltampere characteristic of a thin metallic foil with non diffuse faces," Fizika Metallov i Metallovedenie (FMMTAK), Vol. 63, No. 3, 421-428, 1987.

    41. Froelich, J., "Unital multiplications on a Hilbert space," Proc. of the Mathematical Society, Vol. 117, No. 3, Mar.1993.

    42. Istratescu, I., "Unimodular numerical contractions in Hilbert space," Proc. Japan Acad., Vol. 47, 824-826, May 1971.
    doi:10.3792/pja/1195526382

    43. Stojmenovic, I., Handbook of Wireless Networks and Mobile Computing, John Wiley & Sons, Inc., New York, 2002.

    44. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
    doi:10.2528/PIER05090801

    45. Chen, C. H., C. L. Liu, C. C. Chiu, and T. M. Hu, "Ultrawide band channel calculation by SBR/Image techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
    doi:10.1163/156939306775777387

    46. Abdi, A., H. M. El-Sallabi, L. Vuokko, and S. G. Haggman, "Spatial smoothing effect on kronecker MIMO channel model in urban microcells," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 696, 2007.

    47. Kuo, L.-C. and H.-R. Chuang, "A study of planar printed dipole antennas for wireless communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 652, 2007.
    doi:10.1163/156939307780667355

    48. Mahmoudian, A. and K. Forooragi, "A novel planar leaky wave antenna for wireless applications," Journal of Electromagnetic Waves and Applications, Vol. 22, 313-324, 2008.
    doi:10.1163/156939308784160640

    49. Qin, W., "A novel patch antenna with a T-shaped parasitic strip for 2.4/5.8GHz wlan applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2311-2320, 2007.
    doi:10.1163/156939307783134344

    50. Ayari, M., T. Aguili, and H. Baudrand, "An extended version of the differential-integral approach based on the transverse wave formulation," ITST'06, 457-460, Chengdu, China, Jun. 2006.

    51. Ayari, M., T. Aguili, and H. Baudrand, "Nouvelle formulation de l'approche en ondes transverses & applications aux antennes en reseaux periodiques," OHD'05, 54-59, Hammamet, Tunisia, Sep. 2005.

    52. Tsai, E. Y., A. M. Bacon, M. Tentzeris, and J. Papapolymerou, "Design and development of novel micro-machined patch antenna for wireless applications," Proc. Asian-Pacific Microwave Symposium, 821-824, Nov. 2002.

    53. Ayari, M., T. Aguili, and H. Baudrand, "An electromagnetic simulation tool based on the original transverse wave approach (TWA)," WorldComp'07, Las Vega, Nevada, USA, MSV7410, Jun. 2007.