Vol. 14

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Truncation Effect on Precursor Field Structure of Pulse Propagation in Dispersive Media

By Jiaran Qi and Ari Sihvola
Progress In Electromagnetics Research B, Vol. 14, 65-86, 2009


The dynamic evolutions of full Gaussian and particularly the truncated Gaussian pulses in dispersive Lorentz media are studied numerically in detail. The observed qualitative phenomena lead to revised interpretation regarding both Sommerfeld and Brillouin precursors. Neither strict Sommerfeld nor Brillouin precursor is present for the case of an incident full Gaussian pulse for any finite propagation distance. In addition, the Brillouin effect can be separated into a tail and a forerunner depending on the turn-on point of the initial pulse. Moreover, the essence of an artificial precursor is discussed, which deserves caution when handling the high dynamic range problems by numerical algorithm.


Jiaran Qi and Ari Sihvola, "Truncation Effect on Precursor Field Structure of Pulse Propagation in Dispersive Media," Progress In Electromagnetics Research B, Vol. 14, 65-86, 2009.


    1. Sommerfeld, A., "Uber die fortpflanzung des lichtes in dispergierenden medien," Ann. Phys., Vol. 44, 177-202, 1914.

    2. Brillouin, L., "Uber die fortpflanzung des licht in dispergierenden medien," Ann. Phys., Vol. 44, 203-240, 1914.

    3. Brillouin, L., Wave Propagation and Group Velocity, Academic, 1960.

    4. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley& Sons, Inc., 1975.

    5. Oughstun, K. E. and G. C. Sherman, "Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium)," J. Opt. Soc. Am. B, Vol. 5, 817-848, 1988.

    6. Wyns, P., D. P. Foty, and K. E. Oughstun, "Numerical analysis of the precursor fields in linear dispersive pulse propagation," J. Opt. Soc. Am. A, Vol. 6, 1421-1429, 1989.

    7. Oughstun, K. E., P.Wyns, and D. Foty, "Numerical determination of the signal velocity in dispersive pulse propagation," J. Opt. Soc. Am. A, Vol. 6, 1430-1440, 1989.

    8. Solhaug, J. A., J. J. Stamnes, and K. E. Oughstun, "Diffraction of electromagnetic pulses in a single-resonance Lorentz medium," Pure Appl. Opt., Vol. 7, 1079-1101, 1998.

    9. Balictsis, C. M. and K. E. Oughstun, "Uniform asymptotic description of ultrashort Gaussian-pulse propagation in a casual, dispersive dielectric," Phys. Rev. E, Vol. 47, 3645-3669, 1993.

    10. Oughstun, K. E. and C. M. Balictsis, "Gaussian pulse propagation in a dispersive, absorbing dielectric," Phys. Rev. Lett., Vol. 77, 2210-2213, 1996.

    11. Balictsis, C. M. and K. E. Oughstun, "Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, casually dispersive medium," Phys. Rev. E, Vol. 55, 1910-1921, 1997.

    12. Ni, X. and R. R. Alfano, "Brillouin precursor propagation in the THz region in Lorentz media," Optics Express, Vol. 14, 4188-4194, 2006.

    13. Oughstun, K. E., "Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 53, 1582-1590, 2005.

    14. Beezley, R. S. and R. J. Krueger, "An electromagnetic inverse problem for dispersive media," J. Math. Phys., Vol. 26, 317-325, 1985..

    15. Kristensson, G., "Direct and inverse scattering problems in dispersive media — Green’s functions and invariant imbedding techniques," Methoden und Verfahren der Mathe-matischen Physik, Vol. 37, 105-119, 1991.

    16. Karlsson, A., "Wave propagators for transient waves in onedimensional media ," Wave Motion, Vol. 24, No. 1, 85-99, 1996.

    17. Cossmann, S. M. and E. J. Rothwell, "Transient reflection of plane waves from a Lorentz medium half space," J. of Electromagn. Waves and Appl., Vol. 21, 1289-1302, 2007.

    18. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, 2-11, 2007.

    19. Bigelow, M. S., N. N. Lepeshkin, H. Shin, and R. W. Boyd, "Propagation of smooth and discontinuous pulses through materials with very large or very small group velocities," Journal of Physics: Condensed Matter, Vol. 18, 3117-3126, 2006.

    20. Dvorak, S. L. and R. W. Ziolkowski, "Hybrid analytical-numerical approach for modeling transient wave propagation in Lorentz medium," J. Opt. Soc. Am. A, Vol. 15, 1241-1254, 1998.

    21. Ziolkowski, R. W. and J. B. Judkins, "Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams," J. Opt. Soc. Am. A, Vol. 9, 2021-2030, 1992.

    22. Ziolkowski, R. W., "Superluminal transmission of information through an electro-magnetic metamaterial," Phys. Rev. E, Vol. 63, 1-13, 2001.

    23. Ziolkowski, R. W., "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 1-15, 2001.

    24. Sihvola, A. H., Electromagnetic Mixing Formulas and Application, IEE, 1999.

    25. Pendry, J. B., A. J. Holden, D. C. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.

    26. Robert, P., Electrical and Magnetic Properties of Materials, Artech House, 1988.