Vol. 17
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-08-28
The Multi-Objective Optimization of Non-Uniform Linear Phased Arrays Using the Genetic Algorithm
By
Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009
Abstract
In this article, a linear phased antenna array for beam scanning is considered with a fixed narrow/broad interference out of the scanning region. This interference is aimed to be suppressed by optimizing the positions of array elements while avoiding the rise of maximum sidelobe level (MSLL) during the main beam is scanning within the prescribed region. These two objectives; suppressing the fixed interference and avoiding the rise of MSLL during scanning are in conflict with one another. In order to evaluate the effectiveness of such multi-objective approaches it is important to report Pareto optimal solutions which are the objective way of solving multi-objective optimization problems. Thus, in this work, the genetic algorithm (GA) is introduced for the purpose of obtaining the Pareto optimal fronts for the two conflicting objectives to show the effectiveness of the proposed method.
Citation
Fikret Tokan, and Filiz Gunes, "The Multi-Objective Optimization of Non-Uniform Linear Phased Arrays Using the Genetic Algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309
References

1. Yan, K. K. and Y. L. Lu, "Sidelobe reduction in array pattern synthesis using genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 45, 1117-1122, 1997.
doi:10.1109/8.596902

2. Bevelacqua, P. J. and C. A. Balanis, "Minimum sidelob levels for linear arrays," IEEE Trans. Antennas Propagat., Vol. 55, 3442-3449, 2007.
doi:10.1109/TAP.2007.910490

3. Khodier, M. M. and C. G. Christodoulou, "Sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propagat., Vol. 53, 2674-2679, 2005.
doi:10.1109/TAP.2005.851762

4. Tonn, D. A. and R. Bansal, "Reduction of sidelobe levels in interrupted phased array antennas by means of a genetic algorithm," Int. J. RF Microwave Comput. Aided. Eng., Vol. 17, 134-141, 2007.
doi:10.1002/mmce.20207

5. Er, M. H., "Linear antenna array pattern synthesis with prescribed broad nulls," IEEE Trans. Antennas Propagat., Vol. 38, 1496-1498, 1990.
doi:10.1109/8.57004

6. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 45, 1009-1015, 1997.
doi:10.1109/8.585749

7. Ismail, T. H. and M. M. Dawoud, "Null steering in phased arrays by controlling the element positions," IEEE Trans. Antennas Propagat., Vol. 39, 1561-1566, 1991.
doi:10.1109/8.102769

8. Abu-Al-Nadi, D. I., T. H. Ismail, and M. J. Mismar, "Interference suppression by element position control of phased arrays using LM algorithm," Int. J. Electron. Commun., Vol. 60, 151-158, 2006.
doi:10.1016/j.aeue.2005.02.005

9. Mouhamadou, M., P. Armand, P. Vaudon, and M. Rammal, "Interference suppression of the linear antenna arrays controlled by phase with use of SQP algorithm," Progress In Electromagnetics Research, Vol. 59, 251-265, 2006.
doi:10.2528/PIER05100603

10. Guney, K. and A. Akdagli, "Null steering of linear antenna arrays using modified tabu search algorithm," Progress In Electromagnetics Research, Vol. 33, 167-182, 2001.
doi:10.2528/PIER00121402

11. Steyskal, H., R. A. Shore, and R. L. Haupt, "Methods for null control and their effects on the radiation pattern," IEEE Trans. Antennas Propagat., Vol. 34, 404-409, 1986.
doi:10.1109/TAP.1986.1143816

12. Chung, Y. C. and R. L. Haupt, "Amplitude and phase adaptive nulling with a genetic algorithm," Journal Electromagnetic Waves and Applications, Vol. 14, No. 5, 631-649, 2000.
doi:10.1163/156939300X01337

13. Lu, Y. and B. K. Yeo, "Adaptive wide null steering for digital beamforming array with the complex coded genetic algorithm," Proceedings of IEEE International Conference in Phased Array Systems and Technology, 557-560, Dana Point, CA, USA, 2000.

14. Ibrahim, H. M., "Null steering by real-weight control --- A method of decoupling the weights ," IEEE Trans. Antennas Propagat., Vol. 39, 1648-1650, 1991.
doi:10.1109/8.102781

15. Babayigit, B., A. Akdagli, and K. Guney, "A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control," Journal Electromagnetic Waves and Applications, Vol. 20, No. 8, 1007-1020, 2006.
doi:10.1163/156939306776930222

16. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

17. Hejres, J. A., "Null steering in phased arrays by controlling the positions of selected elements," IEEE Trans. Antennas Propagat., Vol. 52, 2891-2895, 2004.
doi:10.1109/TAP.2004.835128

18. Kalyanmoy, D., Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, 2001.

19. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propagat., Vol. 50, 1732-1742, 2002.
doi:10.1109/TAP.2002.807947

20. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 42, 993-999, 1994.
doi:10.1109/8.299602

21. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1997.

22. Ares, F., J. A. Rodriguez, E. Villanueva, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Propagat., Vol. 47, 506-510, 1999.
doi:10.1109/8.768786

23. Wolfgang, B., N. Peter, K. Robert, and F. Frank, Genetic Programming --- An Introduction, Morgan Kaufmann, 1998.

24. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer Academic Publishers, 1989.

25. Haup, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics , Wiley-IEEE Press, 2007.