Vol. 21
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-06
Efficient Electrically Small Oblate Spheroidal and Spherical Antennas in Shells with Negative Permittivity
By
Progress In Electromagnetics Research B, Vol. 21, 151-170, 2010
Abstract
Electrically small oblate spheroidal and spherical antennas in confocal shells with negative permittivity represent perspective antenna design to combine moderately small size, wide bandwidth, high e±ciency and power of radiation. However, optimization of the antennas performance parameters imposes contradictory restrictions on permittivity of the shells, electrical size of the antennas, shape of the antennas and shells. Simulation results based on method of eigen-functions have shown that the antennas can be tuned on resonance for small magnitudes of negative permittivity of the shells and antiresonance for higher magnitudes. Optimal combination of power and efficiency of radiation of the antenna and the quality factor is obtained in an intermediate range of negative permittivity by combining merits of resonance and antiresonance of the antenna. Antiresonant range of the oblate spheroidal antenna emerges for lower permittivity magnitudes as compared with the spherical antenna. As a result, the optimal size of the shell of oblate spheroidal antenna is comparatively small. However, more gradual emerging of antiresonant properties of the spherical antenna makes spherical design more suitable for higher level of inherent absorption of the shell medium with negative permittivity.
Citation
Oleg B. Vorobyev, "Efficient Electrically Small Oblate Spheroidal and Spherical Antennas in Shells with Negative Permittivity," Progress In Electromagnetics Research B, Vol. 21, 151-170, 2010.
doi:10.2528/PIERB10031710
References

1. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans Antennas Propag. , Vol. 54, No. 7, 2113-2130, Jul. 2006.
doi:10.1109/TAP.2006.877179

2. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1644-1653, Jun. 2006.
doi:10.1109/TAP.2006.875498

3. Erentok, A. and R. W. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag., Vol. 55, 731-741, Mar. 2007.
doi:10.1109/TAP.2007.891553

4. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, 691-7407, Mar. 2008.
doi:10.1109/TAP.2008.916949

5. Pistolkors, A. A. and V. I. Zimina, "Radiation of a vibrator antenna, enclosed in electron plasma," Questions of Radio Electronics, Vol. 12, No. 1, 3-12, 1963 (in Russian).

6. Chen, K. M. and C. C. Lin, "Enhanced radiation from a plasmaembedded antenna," Proc. IEEE, Vol. 56, 1595-1597, 1968.
doi:10.1109/PROC.1968.6659

7. Roslyakov, N. M. and N. A. Tenyakova, "Radiation of plasma-coated prolate spheroidal antenna," Journal of Communications Technology and Electronics, Vol. 37, No. 10, 5-14, 1992.

8. Roslyakov, N. M., N. A. Tenyakova, and O. B. Vorob'ev (Vorobyev), "Radiation of a circular loop antenna enclosed by a magnetodielectric sphere," Journal of Communications Technology and Electronics, Vol. 49, No. 10, 1133-1140, 2004.

9. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604

10. Bichutskaya, T. I. and G. I. Makarov, "Radiation of an electric dipole from a small plasma spheroid," Radiophysics and Quantum Electronics, Vol. 46, No. 12, 940-947, 2003.
doi:10.1023/B:RAQE.0000029589.54371.24

11. Bichutskaya, T. I. and G. I. Makarov, "Radiation from a small spheroidal antenna with plasma shell," Radiophysics and Quantum Electronics, Vol. 49, No. 3, 940-947, 2006.
doi:10.1007/s11141-006-0055-8

12. Foltz, H. D., J. S. McLean, and G. Crook, "Disk loaded monopoles with parallel strip elements," IEEE Trans. Antennas Propag., Vol. 46, 1894-1896, 1998.
doi:10.1109/8.743844

13. Stratton, J. A., P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, "Spheroidal Wave Functions," John Wiley & Sons, New York,1956.

14. Flammer, C., Spheroidal Wave Functions, Stanford Univ. Press, California, 1957.

15. Komarov, I. V., L. I. Ponomarev, and S. Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, Nauka, Moscow, 1976 (in Russian).

16. Li, L.-W., M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex argument: A review with an algorithm ," Phys. Rev. E, Vol. 58, No. 5, 6792-6806, Nov. 1998.
doi:10.1103/PhysRevE.58.6792

17. Falloon, P. E., P. C. Abbott, and J. B. Wang, "Theory and computation of spheroidal wave functions," Journal of Physics A, Vol. 36, 5477-5495, 2003.
doi:10.1088/0305-4470/36/20/309

18. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, Apr. 2005.
doi:10.1109/TAP.2005.844443

19. Collin, R. E. and S. Rothschild, "Evaluation of antenna Q," IEEE Trans. Antennas Propag., Vol. 17, No. 1, 23-27, Jan. 1964.
doi:10.1109/TAP.1964.1138151

20. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas ," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, May 1996.
doi:10.1109/8.496253

21. Best, S. R., "A Comparison of the cylindrical folded helix Q to the Gustafsson limit," Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference in Berlin, 2554-2557, March 23-27, 2009.

22. Sten, J. C.-E., "Radiation Q of a small antenna enclosed in an oblate spheroidal volume: Transverse-to-axis polarisation," AEU. Int. Jl. Electron. Commun., Vol. 57, No. 3, 201-205, 2003.

23. Best, S. R., "The radiation properties of electrically small folded spherical helix antennas," IEEE Trans. Antennas Propag., Vol. 52, 953-960, 2004.

24. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, 1047-1053, 2005.

25. Hirvonen, M. and S. A. Tretyakov, "Near-zero permittivity substrates for horizontal antennas: performance enhancement and limitations," Microw. and Opt. Tech. Lett., Vol. 50, 2674-2677, Oct. 2008.

26. Stuart, H. R., A. D. Yaghjian, and S. R. Best, "Limitations in relating quality factor to bandwidth in a double resonance small antenna ," IEEE Antennas Wireless Propag. Lett., Vol. 6, No. 4, 460-463, 2007.

27. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, and X.Wu, "A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators ," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.

28. Hu, X., Q. Zhang, and S. Xe, "Compact dual-band rejection filter based on complementary meander line split ring resonator," Progress In Electromagnetics Research Letters, Vol. 8, 181-190, 2009.