Vol. 23
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-25
Comparative Analysis Between Experimental Characterization Results and Numerical FDTD Modeling of Self-Assembled Photonic Crystals
By
Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010
Abstract
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1,1], are compared to theoretical calculations based on the Finite Difference Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.
Citation
Anderson Oliveira Silva, Roberto Bertholdo, Mateus Geraldo Schiavetto, Ben-Hur Viana Borges, Sidney José Lima Ribeiro, Younes Messaddeq, and Murilo Araujo Romero, "Comparative Analysis Between Experimental Characterization Results and Numerical FDTD Modeling of Self-Assembled Photonic Crystals," Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010.
doi:10.2528/PIERB10060404
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

2. Wu, C. J., J. J. Liao, and T. W. Chang, "Tunable multilayer fabry-perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.

3. Johnson, S. G. and J. D. Joannopoulos, "Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap," Applied Physics Letters, Vol. 77, No. 22, 3490-3492, 2000.
doi:10.1063/1.1328369

4. Sun, H. B., S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Applied Physics Letters, Vol. 74, No. 6, 786-788, 1999.
doi:10.1063/1.123367

5. Xia, Y., B. Gates, and Z.-Y. Li, "Self-assembly approaches to three-dimensional photonic crystals," Advanced Materials, Vol. 13, No. 6, 371-375, 2001.
doi:10.1002/1521-4095(200103)13:6<371::AID-ADMA371>3.0.CO;2-K

6. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2005.

7. Chan, C. T., Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Review B, Vol. 51, 16635-16642, 1995.
doi:10.1103/PhysRevB.51.16635

8. Hermann, C. and O. Hess, "Modified spontaneous emission rate in an inverse opal structure with complete photonic band gap," Journal of Optical Society of America B, Vol. 19, No. 12, 3013-3018, 2002.
doi:10.1364/JOSAB.19.003013

9. Davanço, M., A. Xing, J. W. Raring, E. L. Hu, and D. J. Blumenthal, "Compact broadband photonic crystal filters with reduced back-reflections for monolithic InP-based photonic integrated circuits," IEEE Photonics Technology Letters, Vol. 18, No. 10, 1155-1157, 2006.
doi:10.1109/LPT.2006.874729

10. Skivesen, N., A. Têtu, and M. Kristensen, "Photonic crystal waveguide biosensor," Optics Express, Vol. 15, No. 6, 3169-3176, 2007.
doi:10.1364/OE.15.003169

11. Faraon, A., E. Waks, D. Englund, I. Fushman, and J. Vuckoic, "Efficient photonic crystal cavity-waveguide couplers," Applied Physics Letters, Vol. 90, 1-3, 2007.

12. Lee, M. and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Optics Express, Vol. 15, No. 8, 4530-4535, 2007.
doi:10.1364/OE.15.004530

13. Bertholdo, R., A. O. Silva, M. G. Schiavetto, B. H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Fabrication and analysis of self-assembled photonic crystals structures," Proceedings of the SBMO/IEEE MTT-S International Microwaves and Optoelectronics Conference, Vol. 1, 50-53, 2007.
doi:10.1109/IMOC.2007.4404210

14. Alencar, M. A., G. S. Maciel, C. B. Araújo, R. Bertholdo, Y. Messaddeq, and S. J. Ribeiro, "Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G," Journal of Non-Crystalline Solids, Vol. 351, 1846-1849, 2005.
doi:10.1016/j.jnoncrysol.2005.04.026

15. Wong, S., V. Kitaev, and G. A. Ozin, "Colloidal crystal films: advances in universality and perfection," Journal of the American Chemical Society, Vol. 125, No. 50, 15589-15598, 2003.
doi:10.1021/ja0379969

16. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, Vol. 65, No. 25, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152

17. Berenger, J. P., "Three-dimensional perfectly matched layer absorbing medium for the truncation of FDTD lattices," Journal of Computational Physics, Vol. 127, No. 0181, 363-379, 1995.

18. Bohren, C. F. and D. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley and Sons, New York, 1983.

19. Kasarova, S. N., N. G. Sultanova, S. D. Ivanov, and I. D. Nikolov, "Analysis of the dispersion of optical plastic materials," Optical Materials, Vol. 29, 1481-1490, 2007.
doi:10.1016/j.optmat.2006.07.010

20. Mayoral, R., J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, and A. Blanco, "3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure," Advanced Materials, Vol. 9, 257-260, 1997.
doi:10.1002/adma.19970090318

21. Martinez, J. M., Modeling of opal-based photonic crystals, Ph.D. Thesis, Université Montpellier, 2002 (in French).