Vol. 25
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-20
FA-ScanSAR : Full Aperture Scanning Pulse by Pulse for the Nearspace Slow-Moving Platform Borne SAR
By
Progress In Electromagnetics Research B, Vol. 25, 23-37, 2010
Abstract
Because the nearspace slow-moving platform borne synthetic aperture radar (SAR) can realize high resolution imaging using low pulse repetition frequency (PRF), a full-aperture ScanSAR (FA-ScanSAR) operation, which switches the range beam pulse by pulse, was proposed for wide swath imaging. This operation separates the wide swath into several sub-swaths, and each of which can be illuminated by a narrow range beam. The SAR antenna switches the range beam to point at each of the sub-swaths in turn, transmits pulses and receives echoes pulse by pulse. The design method of main system parameters and the calculating expressions of the performance indexes are addressed in the paper. A design example is given to compare the performance of the conventional strip operation, ScanSAR and FA-ScanSAR operation. The results show that FA-ScanSAR operation can obtain high resolution by full aperture accumulation in wide swath and improve the signal-to-noise ratio of SAR images for the nearspace slow-moving platform borne SAR.
Citation
Bing Sun, Jie Chen, Chun-Sheng Li, and Yin-Qing Zhou, "FA-ScanSAR : Full Aperture Scanning Pulse by Pulse for the Nearspace Slow-Moving Platform Borne SAR," Progress In Electromagnetics Research B, Vol. 25, 23-37, 2010.
doi:10.2528/PIERB10061304
References

1. Curlander, J. C. and R. N. McDonough, Synthetic Apeture Radar Systems and Signal Processing, Wiley Series in Remote Sensing, John Wiley & Sons, 1991.

2. Currie, A. and M. A. Brown, "Wide-swath SAR," IEE Proceedings, Vol. 139, No. 2, 122-135, April 1992.

3. Younis, M., Digital beam-forming for high resolution wide swath real and synthetic aperture radar, Doctoral dissertation, University of Karlsruhe, July 2004.

4. Freeman, A., G. Krieger, P. Rosen, et al. "SweepSAR: Beam-forming on receive using a reflector-phase array feed combination for spaceborne SAR," Proc. of 2009 IEEE Radar Conference, 1-9, Pasadena, USA, May 4--8, 2009.

5. Moore, R. K., J. P. Classssem, and Y. H. Lin, "Scanning spaceborne synthetic aperture radar with integrated radiometer," IEEE Trans. on Aerosp. Electron. Syst., Vol. 17, No. 3, 410-420, May 1981.
doi:10.1109/TAES.1981.309069

6. De Zan, F. and A. M. Guarnieri, "TOPSAR: Terrain observation by progressive scans," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 9, 2352-2360, September 2006.
doi:10.1109/TGRS.2006.873853

7. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Apeture Radar, Artech House, Boston, 1995.

8. Callaghan, G. D., Wide swath SAR: Overcoming the trade-off between swath and azimuth resolution, Doctoral Dissertation, Queensland Univ., Brisbane, Australia, 1999.

9. Li, Z. F., H. Y.Wang, T. Su, et al. "Generation of wide-swath and high-resolution sar images from multichannel small spaceborne SAR systems," IEEE Geosci. Remote Sensing Letters, Vol. 2, No. 1, 82-86, January 2005.
doi:10.1109/LGRS.2004.840610

10. Gebert, N. and G. Krieger, "Azimuth phase center adaptation on transmit for high-resolution wide-swath SAR imaging," IEEE Geosci. Remote Sensing Letters, Vol. 6, No. 4, 782-786, October 2009.
doi:10.1109/LGRS.2009.2025245

11. Freeman, A., A. Donnellan, P. Rosen, et al. "Deformation, ecosystem structure, and dynamics of ice (DESDynI)," Proc. of EUSAR, Vol. 2, 115-118, Friedrichshafen, Germany, June 2--5, 2008.

12. Allen, E. H., "The case for near space," Aerospace America, 31-34, February 2006.

13. Bolkcom, C., "Potential military use of airships and aerostats," CRS Report for Congress, RS211886, November 11, 2004.

14. Weeks, D. J., S. H. Walker, and R. L. Sackheim, "Small satellites and the DARPA/Air force FALCON program," Acta Astronautica, Vol. 57, 469-277, 2005.
doi:10.1016/j.actaastro.2005.03.058

15. Wang, W. Q., J. Y. Cai, and Q. C. Peng, "Near-space SAR: A revolutionizing remote sensing mission," Proc. of APSAR Conf., 127-131, Huangshan, China, 2007.

16. Wang, W. Q., Q. C. Peng, J. Y. Cai, and L. Wang, "Azimuth signal processing for near-space high-resolution and wide-swath imaging," Proc. of ICSP, 2330-2332, 2008.

17. Wang, W. Q., J. Y. Cai, and Q. C. Peng, "Near-space microwave radar remote sensing: Potentials and challenge analysis," Remote Sensing, Vol. 2, 717-739, 2010.
doi:10.3390/rs2030717