Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-08-07

Dual Band Switchable Metamaterial Electromagnetic Absorber

By Bo Zhu, Ci Huang, Yijun Feng, Junming Zhao, and Tian Jiang
Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010
doi:10.2528/PIERB10070802

Abstract

This paper presents the design, fabrication and measurement of a dual band switchable metamaterial electromagnetic absorber. The unit cell of the metamaterial consists of dipole mode electric resonators coupled by microwave diodes on one side of a dielectric substrate and metallic ground plane on the other side. Simulation and measurement results show that by forward or reverse biasing the diodes so as to change the coupling between the resonators, the absorber can be dynamically switched to operate in two adjacent frequency bands with nearly perfect peak absorption. Field distribution reveals the physical origin of the switchable performance based on the dipole mode of the electric resonator in the unit cell. It is also demonstrated that the frequency difference between the two bands can be tuned by adjusting the loading positions of the diodes with unchanged high absorption, which helps to design absorbers with specific switchable working frequencies in practical applications.

Citation


Bo Zhu, Ci Huang, Yijun Feng, Junming Zhao, and Tian Jiang, "Dual Band Switchable Metamaterial Electromagnetic Absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802
http://www.jpier.org/PIERB/pier.php?paper=10070802

References


    1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, 1985.

    2. Hatakeyama, K. and T. Inui, "Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers," IEEE Trans. Magn., Vol. 20, No. 5, 1261-1263, September, 1984.
    doi:10.1109/TMAG.1984.1063424

    3. Matsumoto, M. and Y. Miyata, "Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal paticles," IEEE Trans. Magn., Vol. 33, No. 6, 4459-4464, November, 1997.
    doi:10.1109/20.649882

    4. Salisbury, W. W., Absorbent Body of Electromagnetic Waves, US Patent 2599944, June 10, 1952.

    5. Munk, B. A., Frequency Selective Surfaces, Theory and Design, Wiley, New York, 2000.

    6. N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, May, 2008.

    7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, May, 2008.
    doi:10.1364/OE.16.007181

    8. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, No. 12, 125104-1-125104-6, March, 2009.
    doi:10.1103/PhysRevB.79.125104

    9. Zhu, B., Z. Wang, Z. Yu, Q. Zhang, J. Zhao, Y. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 114102-1-114102-4, November, 2009.

    10. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, No. 3, 033108-1-033108-4, July, 2009.

    11. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, and X. Wu, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetic Research Letters, Vol. 7, 15-24, 2009.

    12. Huang, R., Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetic Research B, Vol. 14, 407-429, 2009.
    doi:10.2528/PIERB09040902

    13. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 1, 46-47, January, 2004.
    doi:10.1109/LMWC.2003.820639

    14. Huang, Z., J. Xue, Y. Hou, J. Chu, and D. H. Zhang, "Optical magnetic response from parallel plate metamaterials," Phys. Rev. B, Vol. 74, No. 19, 193105-1-193105-4, November, 2006.

    15. Azad, A. K., A. J. Taylor, E. Smirnova, and J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., Vol. 92, No. 1, 011119-1-011119-3, January, 2008.
    doi:10.1063/1.2829791

    16. Chen, H., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 30, 597-600, November, 2006.