Vol. 25
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-20
Miniature and Higher-Order Mode Ferrite MIMO Ring Patch Antenna for Mobile Communication System
By
Progress In Electromagnetics Research B, Vol. 25, 53-74, 2010
Abstract
Miniaturized ferrite ring patch antennas (RPAs) were designed and fabricated for multiple-input multiple-out (MIMO) applications. Design parameters of higher-order mode ferrite RPAs, 1-RPA and 2-RPA, were optimized, and antenna performance of the ferrite 1-RPA was evaluated. The Z-type hexaferrite and 2%-weight borosilicate glass composite was used for the ferrite antenna disk. The measured permeability (μr) and permittivity (εr) of the hexaferrite were 2.59 and 5.7, respectively, at 2.5 GHz. Threemode orthogonal radiation of the ferrite 1-RPA was experimentally confirmed. With regard to the ferrite 2-RPA, excellent isolation (-40 dB) between ports 1 and 2 was achieved at 2.5 GHz. This excellent isolation property is attributed to both mode 3 orthogonal radiations of the bottom and top RPAs. The volumes of the 1- and 2-RPA were reduced to 14.5% and 34.5%, respectively, from 95 cm3 of a dielectric 2-circular patch antenna (2-CPA) volume.
Citation
Seok Bae, Yang-Ki Hong, Jae-Jin Lee, Ji-Hoon Park, Jeevan Jalli, Gavin Abo, Hyuck M. Kwon, and Chandana K. K. Jayasooriya, "Miniature and Higher-Order Mode Ferrite MIMO Ring Patch Antenna for Mobile Communication System," Progress In Electromagnetics Research B, Vol. 25, 53-74, 2010.
doi:10.2528/PIERB10071910
References

1. Bhatti, R. A., J. H. Choi, and S. O. Park, "Quad-band MIMO antenna array for portable wireless communications terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 129-132, 2009.
doi:10.1109/LAWP.2008.2012274

2. Chung, K. and J. H. Yoon, "Integrated MIMO antenna with high isolation characteristic," Electronics Letters, Vol. 43, No. 4, 199-201, 2007.
doi:10.1049/el:20070012

3. Vaughan, R. G., "Two-port higher mode circular microstrip antenna," IEEE Trans. Antennas Prop., Vol. 36, 309-321, Mar. 1988.
doi:10.1109/8.192112

4. Vaughan, R. G. and J. B. Anderson, "A multiport patch antenna for mobile communications," Proc. 14th European Microwave Conference, 607-612, 1984.
doi:10.1109/EUMA.1984.333391

5. Forenza, A., R. W. Heath, and Jr., "Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels," IEEE Trans. on Comm., Vol. 54, 943-954, May 2006.
doi:10.1109/TCOMM.2006.873978

6. Forenza, A., R. W. Heath, and Jr., "Optimization methodology for designing 2-CPAs exploiting pattern diversity in clustered MIMO channels," IEEE Trans. on Comm., Vol. 56, No. 10, 1748-1759, 2008.
doi:10.1109/TCOMM.2008.060582

7. Bae, S., Y. K. Hong, and A. Lyle, "Effect of Ni-Zn ferrite on bandwidth and radiation efficiency of embedded antenna for mobile phone," J. Appl. Phys., Vol. 103, 07E929, 2008.

8. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, W. M. Sung, G. H. Kim, S. H. Park, J. S. Kum, and H. M. Kwon, "Co2Z hexaferrite T-DMB antenna for mobile phone applications," IEEE Trans. Magn., Vol. 45, No. 10, 4199-4203, 2009.
doi:10.1109/TMAG.2009.2022412

9. Kim, Y., S. Bae, and J. R. Kim, "Effect of ferrite substrate on antenna miniaturization," J. Korean Phys. Soc., Vol. 52, 127-141, 2008.
doi:10.3938/jkps.52.127

10. Mahmud, S. T., A. K. M. Akther Hossain, A. K. M. Abdul Hakim, M. Seki, T. Kawai, and H. Tabata, "Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite," J. Magn. Magn. Matr., Vol. 305, 269-274, 2006.
doi:10.1016/j.jmmm.2006.01.012

11. Kulkarni, D. C., S. P. Patil, and V. Puri, "Properties of NixZn(1-x)Fe2O4 thick films at microwave frequencies," Microelectronics J., Vol. 39, 248-252, 2008.
doi:10.1016/j.mejo.2007.12.008

12. Tsutaoka, T., T. Kasagi, and K. Hatakeyama, "Magnetic field effect on the complex permeability for a Mn-Zn ferrite and its composite materials," J. Euro. Ceramic Soc., Vol. 19, 1531-1535, 1999.
doi:10.1016/S0955-2219(98)00474-9

13. Thakur, A., P. Mathur, and M. Singh, "Study of dielectric behavior of Mn-Zn nano ferrites," J. Phys. and Chem. of Solids, Vol. 68, 378-381, 2007.
doi:10.1016/j.jpcs.2006.11.028

14. Zhao, H., J. Zhou, and L. Li, "Complex permeability spectra of Co-substituted lithium zinc perminvar ferrite," Key Eng. Mat., Vol. 368--372, 591-593, 2008.
doi:10.4028/www.scientific.net/KEM.368-372.591

15. Ramesh, B. and D. Ravinder, "Electrical properties of Li-Mn ferrites," Mat. Letters, Vol. 62, 2043-2046, 2008.
doi:10.1016/j.matlet.2007.11.010

16. Bush, G. G., "The complex permeability of a high purity yttrium iron garnet sputtered thin film," J. Appl. Phys., Vol. 73, 6310-6311, 1993.
doi:10.1063/1.352680

17. Krupka, J., S. A. Gabelich, K. Derzakowski, and B. M. Pierce, "Comparison of split post dielectric resonator and ferrite disc resonator techniques for microwave permittivity measurements of polycrystalline yttrium iron garnet," Meas. Sci. Technol., Vol. 10, 1004-1008, 1999.
doi:10.1088/0957-0233/10/11/305

18. Kim, C. W. and J. G. Koh, "A study of synthesis of NiCuZn ferrite sintering in low temperature by metal nitrates and its electromagnetic property," J. Magn. Magn. Matr., Vol. 257, 355-368, 2003.
doi:10.1016/S0304-8853(02)01234-9

19. Wang, H., J. Liu, W. Li, J. Wang, L. Wang, L. Song, S. Yuan, and F. Li, "Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method," J. Alloys and Compounds, Vol. 461, 373-377, 2008.
doi:10.1016/j.jallcom.2007.06.095

20. Shepherd, P., K. K. Mallick, and R. J. Green, "Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation," J. Magn. Magn. Matr., Vol. 311, 683-692, 2007.
doi:10.1016/j.jmmm.2006.08.046

21. Mallick, K. K., P. Shepherd, and R. J. Green, "Dielectric properties of M-type barium hexaferrite prepared by co-precipitation," J. of Euro. Ceramic Soc., Vol. 27, 2045-2052, 2007.
doi:10.1016/j.jeurceramsoc.2006.05.098

22. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, W. M. Seong, and J. S. Kum, "Low loss Z-type barium ferrite (Co2Z) for T-DMB antenna application," J. Appl. Phys., Vol. 105, 07A515, 2009.

23. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, I. T. Nam, W. M. Seong, J. S. Kum, and S. H. Park, "New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles," IEEE Trans. Magn., Vol. 45, No. 6, 2557-2560, 2009.
doi:10.1109/TMAG.2009.2018883

24. Bai, Y., J. Zhou, Z. Gui, and L. Li, "Magnetic properties of Cu, Zn-modified Co2Y hexaferrites," J. Magn. Magn. Matr., Vol. 246, 140-144, 2002.
doi:10.1016/S0304-8853(02)00040-9

25. Bai, Y., J. Zhou, Z. Gui, L. Li, and L. Qiao, "The physics properties of Bi-Zn codoped Y-type hexagonal ferrite," J. Alloys and Compounds, Vol. 450, 412-416, 2008.
doi:10.1016/j.jallcom.2006.10.122

26. Lin, C.-S., C.-C. Hwang, T.-H. Huang, G.-P. Wang, and C.-H. Peng, "Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route," Mat. Sci. and Eng. B, Vol. 139, 24-36, 2007.
doi:10.1016/j.mseb.2007.01.053

27. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., Wiley, New York, 1982.

28. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Trans. on Ant. and Prop., Vol. 54, 3391-3399, Nov. 2006.

29. Hansen, R. C. and M. Burke, "Antenna with magneto-dielectrics," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 75-78, 2000.
doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W

30. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

31. Mclean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. on Ant. and Prop., Vol. 44, 672-675, May 1996.
doi:10.1109/8.496253

32. Ziolkowski, R. W. and A. Erentok, "At and below the Chu limit: Passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microw., Ant. and Prop., Vol. 1, 116-128, Feb. 2007.
doi:10.1049/iet-map:20050342

33. Caimi, F. M., Theoretical size constraints for antennas based on quality factor Q, Released document by IEEE P802.15 working group, IEEE 802:15 < 02/295 >, July 2002.

34. Walser, R. M., W. Win, and P. M. Valanju, "Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility," IEEE Trans. Magn., Vol. 34, 1390-1392, 1998.
doi:10.1109/20.706558

35. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron Lett., Vol. 39, 705, 2003.
doi:10.1049/el:20030495