Vol. 27

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-11-30

Three-Dimensional Axisymmetric Invisibility Cloaks with Arbitrary Shapes in Layered-Medium Background

By Yong-Bo Zhai and Tie-Jun Cui
Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011
doi:10.2528/PIERB10081501

Abstract

Three-dimensional (3D) axisymmetric invisibility cloaks with arbitrary shaped in layered-media background are presented using the transformation optics. The inner and outer boundaries of the cloaks can be non-conformal with arbitrary shapes, which considerably improve the flexibility of the cloaking applications. However, such kinds of 3D cloaks cannot be simulated using the commercial softwares due to the tremendous memory requirements and CPU time. By taking advantage of the rotationally symmetrical property, we propose an efficient finite-element method (FEM) to simulate and analyze the 3D cloaks, which can greatly reduce the CPU time and memory requirements. The method is based on the electric-field formulation, in which the transverse fields are expanded in terms of second-order edge-based vector basis functions and the azimuth components are expanded using second-order nodal-based scalar basis functions. The FEM mesh is truncated using the absorbing boundary condition. Excellent cloaking performance of the 3D cloaks in layered-media background has been verified by the proposed method.

Citation


Yong-Bo Zhai and Tie-Jun Cui, "Three-Dimensional Axisymmetric Invisibility Cloaks with Arbitrary Shapes in Layered-Medium Background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.
doi:10.2528/PIERB10081501
http://www.jpier.org/PIERB/pier.php?paper=10081501

References


    1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
    doi:10.1126/science.1125907

    2. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
    doi:10.1364/OE.14.009794

    3. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E,, Vol. 74, 2006.

    4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    5. Chen, H., B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 2007.

    6. Andrey, N., W. Q. Cheng, and S. Zouhdi, "Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization," New J. Phys., Vol. 11, 2009.

    7. Luo, Yu., H. S. Chen, J. J. Zhang, L. Ran, and J. A. Kong, "Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B., Vol. 77, 2008.

    8. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photo. Nanos. Fund. Appl., Vol. 6, 87-95, 2008.
    doi:10.1016/j.photonics.2007.07.013

    9. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 2007.

    10. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 2008.

    11. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
    doi:10.1364/OL.32.003432

    12. Zhang, J. J., F. Huang, T. Jiang, Y. Luo, H. S. Chen, J. A. Kong, and B. I. Wu, "Cloak for multilayered and gradually changing media," Phys. Rev. B, Vol. 77, 2008.

    13. Li, C., K. Yao, and F. Li, "Invisibility cloaks with arbitrary geometries for layered and gradually changing backgrounds," J. Phys. D: Appl. Phys., Vol. 42, 2009.

    14. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Zero-backscatter cloak for aspherical particles using a generalized DDA formalism," Opt. Express, Vol. 16, 2068-2079, 2008.
    doi:10.1364/OE.16.002068

    15. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Invisibility cloaks for irregular particles using coordinate transformations," Opt. Express, Vol. 16, 6134-6145, 2008.
    doi:10.1364/OE.16.006134

    16. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of Bcgstab with multifrontal algorithm to solve Febi-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
    doi:10.2528/PIER09050604

    17. Sun, X. Y. and Z. P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.
    doi:10.2528/PIER07121502

    18. Greenwood, A. D. and J. M. Jin, "A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML," IEEE Trans. Antennas Propgat., Vol. 47, 1260-1266, 1999.
    doi:10.1109/8.791941

    19. Ding, D. Z. and R. S. Chen, "Electromagnetic scattering by conducting bodies of revolution (BOR) coated with homogeneous chiral media above a lossy half-space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
    doi:10.2528/PIER10021004

    20. Zhai, Y. B., X. W. Ping, W. X. Jiang, and T. J. Cui, "Finite-element analysis of three-dimensional axisymmetrical invisibility cloaks and other metamaterial devices," Commun. Comput. Phys., Vol. 8, 823-834, 2010.

    21. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.

    22. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

    23. Webb, J. P. and S. McFee, "The use of hierarchical triangles in finite-element analysis of microwave and optical devical," IEEE Transactions on Magnetics, Vol. 27, 4040-4043, 1991.
    doi:10.1109/20.104988

    24. Andersen, L. S. and J. L. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Trans. Antennas Propagat., Vol. 47, 112-120, 1999.
    doi:10.1109/8.753001

    25. Chen, R. S., D. X. Wang, E. K. N. Yung, and J. M. Jin, "Application of the multifrontal method to the vector FEM for analysis of microwave filters," Microw. Opt. Tech. Lett., Vol. 31, 465-470, 2001.
    doi:10.1002/mop.10064