Vol. 26
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-10-22
Vectorial Structure of a Phase-Flipped Gauss Beam in the Far Field
By
Progress In Electromagnetics Research B, Vol. 26, 237-256, 2010
Abstract
Based on the vectorial angular spectrum representation and the method of stationary phase, internal vectorial structures of a phase-flipped Gauss (PFG) beam diffracting in the far field are derived in analytical forms. The energy flux for the TE term, TM term and the whole beam are derived and depicted by numerical examples. Influences of the f parameter on the whole energy flux distributions are analyzed. Discrepancies of the whole energy flux distributions between the paraxial and non-paraxial cases are shown in detailed manners. Furthermore, influences of the f parameter on discrepancies between two cases are also studied.
Citation
Jia Li, Yanru Chen, Shixue Xu, Yongqing Wang, Muchun Zhou, Qi Zhao, Yu Xin, and Feinan Chen, "Vectorial Structure of a Phase-Flipped Gauss Beam in the Far Field," Progress In Electromagnetics Research B, Vol. 26, 237-256, 2010.
doi:10.2528/PIERB10082509
References

1. Delaubert, V., D. A. Shaddock, P. K. Lam, B. C. Buchler, H. Bachor, and D. E. McClelland, "Generation of a phase-fiipped Gaussian mode for optical measurements," J. Opt. A: Pure Appl. Opt., Vol. 4, 393-399, 2002.
doi:10.1088/1464-4258/4/4/305

2. Treps, N., U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H. Bachor, and C. Fabre, "Surpassing the standard quantum limit for optical imaging using nonclassical multimode light," Phys. Rev. Lett., Vol. 20, 203601, 2002.
doi:10.1103/PhysRevLett.88.203601

3. Banerji, J., "Propagation of a phase flipped Gaussian beam through a paraxial optical ABCD system," Opt. Commun., Vol. 258, 1-8, 2006.
doi:10.1016/j.optcom.2005.07.054

4. Gao, Z. and B. Lü, "Non-paraxial propagation of phase-flipped Gaussian beams," Chin. Phys. B, Vol. 17, 943-949, 2008.
doi:10.1088/1674-1056/17/3/033

5. Gao, Z. and B. Lü, "Phase-flipped Hermite-Gaussian beams and their propagation beyond the paraxial approximation," Opt. Commun., Vol. 279, 130-140, 2007.
doi:10.1016/j.optcom.2007.07.016

6. Herrero, R. M., P. M. Mejias, S. Bosch, and A. Carnicer, "Vectorial structure of non-paraxial electromagnetic beams," J. Opt. Soc. Am. A, Vol. 18, 1678-1680, 2001.
doi:10.1364/JOSAA.18.001678

7. Mejias, P. M., R. M. Herrero, G. Piquero, and J. M. Movilla, "Parametric characterization of the spatial structure of non-uniformly polarized laser beams," Prog. Quantum Electron., Vol. 26, 65-130, 2002.
doi:10.1016/S0079-6727(02)00003-4

8. Guo, H., J. Chen, and S. Zhuang, "Vector plane wave spectrum of an arbitrary polarized electromagnetic wave," Opt. Express, Vol. 14, 2095-2100, 2006.
doi:10.1364/OE.14.002095

9. Zhou, G., "Analytical vectorial structure of Laguerre-Gaussian beam in the far field," Opt. Lett., Vol. 31, 2616-2618, 2006.
doi:10.1364/OL.31.002616

10. Deng, D. and Q. Guo, "Analytical vectorial structure of radially polarized light beams," Opt. Lett., Vol. 32, 2711-2713, 2007.
doi:10.1364/OL.32.002711

11. Zhou, G., "Far-field structure of a linearly polarized plane wave diffracted by a rectangular aperture," Opt. Laser Technol., Vol. 41, 504-508, 2009.
doi:10.1016/j.optlastec.2008.07.005

12. Liu, D. and Z. Zhou, "Analytical vectorial structure of the anomalous hollow beam in the far field," Opt. Laser Technol., Vol. 42, 640-646, 2010.
doi:10.1016/j.optlastec.2009.11.003

13. Li, J., Y. Chen, Y. Xin, M. Zhou, and S. Xu, "Vectorial structural characteristics of four-petal Gaussian beams in the far field," Eur. Phys. J. Appl. Phys., Vol. 50, 30702, 2010.
doi:10.1051/epjap/2010051

14. Zhou, G., "Analytical vectorial structure of controllable dark-hollow beams in the far field," J. Opt. Soc. Am. A, Vol. 26, 1654-1660, 2009.
doi:10.1364/JOSAA.26.001654

15. Zhou, G. and F. Liu, "Far field structural characteristics of cosh-Gaussian beam," Opt. Laser Technol., Vol. 40, 302-308, 2008.
doi:10.1016/j.optlastec.2007.05.004

16. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Analytical vectorial structure of Hermite-cosine-Gaussian beam in the far field," Opt. Laser Technol., Vol. 43, 152-157, 2010.
doi:10.1016/j.optlastec.2010.06.005

17. Tang, H., X. Li, G. Zhou, and K. Zhu, "Vectorial structure of helical hollow Gaussian beams in the far field," Opt. Commun., Vol. 282, 478-481, 2009.
doi:10.1016/j.optcom.2008.10.054

18. Zhou, G. and J. Zheng, "Vectorial structure of Hermite-Laguerre-Gaussian beam in the far field," Opt. Laser Technol., Vol. 40, 858-863, 2008.
doi:10.1016/j.optlastec.2007.11.003

19. Carter, W. H., "Electromagnetic field of a Gaussian beam with an elliptical cross section," J. Opt. Soc. Am., Vol. 62, 1195-1201, 1972.
doi:10.1364/JOSA.62.001195

20. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, Cambridge, 1995.

21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972.

22. Nemoto, S., "Nonparaxial Gaussian beams," Appl. Opt., Vol. 29, 1940-1946, 1990.
doi:10.1364/AO.29.001940

23. Mansuripur, M., "Distribution of light at and near the focus of high-numerical-aperture objectives," J. Opt. Soc. Am. A, Vol. 3, 2086-2093, 1986.
doi:10.1364/JOSAA.3.002086

24. Rohrbach, A. and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt., Vol. 41, 2494-2507, 2002.
doi:10.1364/AO.41.002494

25. Leutenegger, M., R. Rao, R. A. Leitgeb, and T. Lasser, "Fast focus field calculations," Opt. Express, Vol. 14, 11277-11291, 2006.
doi:10.1364/OE.14.011277

26. Boruah, B. R. and M. A. A. Neil, "Focal field computation of an arbitrary polarized beam using fast Fourier transforms," Opt. Commun., Vol. 282, 4660-4667, 2009.
doi:10.1016/j.optcom.2009.09.019