Vol. 33

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-07-30

A Negative Refractive Index Metamaterial Based on a Cubic Array of Layered Nonmagnetic Spherical Particles

By Edward F. Kuester, Nadja Memic, Simone Shen, Aaron D. Scher, Sung Kim, Kendra Kumley, and Hung Loui
Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011
doi:10.2528/PIERB11042206

Abstract

A low-loss passive metamaterial exhibiting negative refractive index or ``double negative'' electromagnetic properties at microwave frequencies is proposed. The metamaterial is a lattice of spherical particles made up of multiple dielectric materials in concentric layers. Because no magnetic constituents (that tend to have higher losses) are involved, the negative-index behavior is possible with very low values of attenuation. A negative-index metamaterial based on dielectric-coated metal spheres is also proposed, and is predicted to have lower attenuation than other structures based on metallic scatterers. Numerical results and design principles are given.

Citation


Edward F. Kuester, Nadja Memic, Simone Shen, Aaron D. Scher, Sung Kim, Kendra Kumley, and Hung Loui, "A Negative Refractive Index Metamaterial Based on a Cubic Array of Layered Nonmagnetic Spherical Particles," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206
http://www.jpier.org/PIERB/pier.php?paper=11042206

References


    1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    2. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix," IEEE Trans. Ant. Prop., Vol. 51, 2596-2603, 2003.
    doi:10.1109/TAP.2003.817563

    3. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix ," Proceedings 34th European Microwave Conference, 1209-1212, Amsterdam, October 12-14, 2004.

    4. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Pisma Zhurn. Tekh. Fiz., Vol. 32, No. 10, 30-39, 2006 (in Russian); Tech. Phys. Lett., , Vol. 32, 429-432, (in English).

    5. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, art. 043102, 2006.

    6. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electron. Rev., Vol. 14, 179-186, 2006.
    doi:10.2478/s11772-006-0023-z

    7. Yannopapas, V., "Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres," Phys. Rev. B, Vol. 75, art. 035112, 2007.

    8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, art. 035112, 2007.

    8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, art. 045104, 2008.

    9. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions," Metamaterials , Vol. 3, 140-147, 2009.
    doi:10.1016/j.metmat.2009.09.001

    10. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Ant. Prop., Vol. 57, 149-160, 2009.
    doi:10.1109/TAP.2008.2009725

    11. Vendik, I., M. Odit, and D. Kozlov, "3D metamaterial based on a regular array of resonant dielectric inclusions," Radioengineering, Vol. 18, 111-116, 2009.

    12. Shore, R. and A. D. Yaghjian, "Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres," IEEE Trans. Ant. Prop., Vol. 57, 3077-3091, 2009.
    doi:10.1109/TAP.2009.2024495

    13. Vendik, I. B., O. G. Vendik, and M. A. Odit, "An isotropic metamaterial formed with ferroelectric ceramic spherical inclusions," Fiz. Tverd. Tela, Vol. 51, 1499-1503, (in Russian); Phys. Solid State, Vol. 51, 1590{1594, 2009 (in English).

    14. Yannopapas, V. and A. Moroz, "Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges," J. Phys. Cond. Mat., Vol. 17, 3717-3734, 2005.
    doi:10.1088/0953-8984/17/25/002

    15. Seo, B.-J., T. Ueda, T. Itoh, and H. Fetterman, "Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium," Appl. Phys. Lett., Vol. 88, art. 161122, 2006.

    16. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, art. 045105, 2006.

    17. Yannopapas, V., "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol. (RRL), Vol. 1, 208-210, 2007.
    doi:10.1002/pssr.200701191

    18. Khoo, I. C., A. Diaz, D.-H. Kwon, and D. H. Werner, "Liquid crystalline nonlinear optical metamaterials with low-loss tunable negative-zero-positive refractive indices," Proc. SPIE, 6587, art. 658702, 2007.

    19. Alù, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys., Vol. 97, art. 094310, 2005.

    20. Mie, G., "Beiträge sur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 25, 377-445, 1908; Library Translation 1873 , Royal Aircraft Establishment, London, UK, 1976 (in English); Report SAND78-6018, Sandia Laboratories, Albuquerque, NM, 1978.

    21. Kerker, M., Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.

    22. Keller, O., "Optical works of L. V. Lorenz," Progress in Optics, Vol. 43, E. Wolf, ed., Vol. 43, 195-294, Elsevier, Amsterdam, 2002.

    23. Gans, R. and H. Happel, "Zur Optik kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 29, 277-300, 1909.

    24. Stratton, J. A., "The effect of rain and fog on the propagation of very short radio waves," Proc. IRE, Vol. 18, 1064-1074, 1930.
    doi:10.1109/JRPROC.1930.222101

    25. Kreibig, U. and M. Vollmer, "Optical Properties of Metal Clusters," 144, Springer-Verlag, Berlin, 1995.

    26. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

    27. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Chapter 10, U. S. Government Printing Office, Washington DC, 1964.

    28. Lewin, L., "The electrical constants of a material loaded with spherical particles ," J. IEE (London), Part III, Vol. 94, 65-68, 1947.

    29. Khizhnyak, N. A., "Artificial anisotropic dielectrics: I, II and III," Zh. Tekh. Fiz., Vol. 27, 2006-2013, 2014-2026 and 2027-2037, 1957 (in Russian); Sov. Phys. Tech. Phys., Vol. 2, 1858-1864, 1865-1876 and 1877-1886, 1957 (in English).

    30. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys., Vol. 22, 1242-1246, 1951.
    doi:10.1063/1.1699834

    31. Güttler, A., "Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für Probleme der interstellaren Materie und des atmosphärischen Aerosols," Ann. Physik, 6th Folge, Bd. 11, 65-98, 1952.

    32. Shifrin, K. S., "Scattering of light from two-layer particles," Izv. Akad. Nauk SSSR Ser. Geofiz., Vol. 2, 15-21, 1952 (in Russian).

    33. Fenn, R. W. and H. Oser, "Scattering properties of concentric soot-water spheres for visible and infrared light," Appl. Opt., Vol. 4, 1504-1509, 1965.
    doi:10.1364/AO.4.001504

    34. Krekov, G. M. and R. F. Rakhimov, "Calculation of radiation characteristics of polydisperse concentric spheres," Izv. VUZ Fiz., Vol. 6, 30-35, 1973 (in Russian); Sov. Phys. J., Vol. 16, 762-766, 1973 (in English).

    35. Galst'yan, E. A. and A. A. Ravaev, "Electrodynamic parameters of a medium containing two-layer spherical inclusions," Izv. VUZ Radiofiz., Vol. 30, 1243-1248, 1987 (in Russian); Radiophys. Quant. Electron., Vol. 30, 918-922, 1987 (in English).

    36. Ponomarenko, V. I., V. N. Berzhanskii, S. I. Zhuravlev, and E. D. Pershina, "Permittivity and permeability of a synthetic dielectric with metal-plated ferrite particles at microwave frequencies," Radiotekh. Elektron., Vol. 35, 2208-2211, 1990 (in Russian); Sov. J. Commun. Technol. Electron., Vol. 36, No. 3 133-136, 1991 (in English).

    37. Ponomarenko, V. I. and D. I. Mirovitskii, "An artificial dielectric with metallized magnetodielectric inserts," Radiotekhnika, Vol. 46, No. 6, 76{78, 1991 (in Russian); Telecommun. Radio Eng., Vol. 46, No. 5, 104-107, 1991 (in English).

    38. Timoshenko, A. M. and V. I. Ponomarenko, "A generalized formula for the electromagnetic constants of a medium with spherical inclusions," Radiotekh. Elektron., Vol. 41, 412-415, 1996 (in Russian); J. Commun. Technol. Electron., Vol. 41, 379-382, 1996 (in English).

    39. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, 44-55, 2009.
    doi:10.1016/j.metmat.2009.02.001

    40. Trans-Tech Incorporated, http://www.trans-techinc.com.

    41., Morgan Electro Ceramics Ltd., http://www.morganelectroceramics.com.

    42., TCI Ceramics, http://www.magneticsgroup.com.

    43. Temex Ceramics, http://www.temex-ceramics.com.

    44. Pacific Ceramics, http://www.pceramics.com.

    45. Schussler, M., A. Fleckenstein, J. Freese, and R. Jakoby, "Left-handed metamaterials based on split ring resonators for microstrip applications ," 33rd European Microwave Conference, 1119-1122, 2003.

    46. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negativeindex metamaterials with improved performance at optical frequencies ," J. Opt. Soc. Amer. B, Vol. 23, 434-438, 2006.
    doi:10.1364/JOSAB.23.000434

    47. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express, Vol. 14, 6778-6787, 2006.
    doi:10.1364/OE.14.006778

    48. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, 1800-1802, 2006.
    doi:10.1364/OL.31.001800

    49. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, art. 193103, 2006.

    50. He, Y., P. He, V. G. Harris, and C. Vittoria, "Role of ferrites in negative index metamaterials," IEEE Trans. Magnetics, Vol. 42, 2852-2854, 2006.
    doi:10.1109/TMAG.2006.879146

    51. He, Y., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Mag. Mag. Mater., Vol. 313, 187-191, 2007.
    doi:10.1016/j.jmmm.2006.12.031

    52. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, 11536-11541, 2007.
    doi:10.1364/OE.15.011536

    53. Koschny, T., J. Zhoua, and C. M. Soukoulis, "Magnetic response and negative refractive index of metamaterials," Proc. SPIE, Vol. 6581, art. 658103, 2007.

    54. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A, Vol. 9, S361-S365, 2007.
    doi:10.1088/1464-4258/9/9/S13

    55. Kildishev, A. V., U. K. Chettiar, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, "Stochastic optimization of lowloss optical negative-index metamaterial," J. Opt. Soc. Amer. B, Vol. 24, A34-A39, 2007.
    doi:10.1364/JOSAB.24.000A34

    56. Erentok, A., A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, art. 184104, 2007.

    57. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, 6736-6744, 2008.
    doi:10.1364/OE.16.006736

    58. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
    doi:10.1038/nature07247

    59. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.
    doi:10.1364/OL.34.003478

    60. Weis, P., O. Paul, C. Imhof, R. Beigang, and M. Rahm, "Strongly birefringent metamaterials as negative index terahertz wave plates," Appl. Phys. Lett., Vol. 95, art. 171104, 2009.

    61. Lepetit, T., E. Akmansoya, and J.-P. Ganneb, "All-dielectric metamaterial: A ferroelectric-based scheme in the microwave range ," Proc. SPIE, Vol. 7392, art. 73920H, 2009.

    62. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, "The split cube in a cage: Bulk negative-index material for infrared applications," J. Opt. A, Vol. 11, art. 114010, 2009.

    63. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photon. Nanostruct. Fund. Appl., Vol. 7, 92-100, 2009.
    doi:10.1016/j.photonics.2008.12.005

    64. Kanté, B., A. de Lustrac, and J.-M. Loutioz, "Low loss negative index metamaterials with one type of meta-atom," Photon. Nanostruct. Fund. Appl., Vol. 8, 112-119, 2010.
    doi:10.1016/j.photonics.2009.08.001

    65. Alici, K. B. and E. Ozbay, "Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples," IEEE J. Selected Topics Quant. Electron., Vol. 16, 386-393, 2010.
    doi:10.1109/JSTQE.2009.2032668

    66. Burgos, S. P., R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nature Materials, Vol. 9, 407-412, 2010.
    doi:10.1038/nmat2747

    67. Tang, J. and S. He, "A novel structure for double negative NIMs towards UV spectrum with high FOM," Opt. Express, Vol. 18, 25256-25263, 2010.
    doi:10.1364/OE.18.025256

    68. Gong, B. and X. Zhao, "Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies," Opt. Express, Vol. 19, 289-296, 2011.
    doi:10.1364/OE.19.000289

    69. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, art. 067402, 2011.

    70. Goodwin, E. T., "Recurrence relations for cross products of Bessel functions," Quart. J. Mech. Appl. Math., Vol. 2, 72-74, 1949.