Vol. 31
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-16
Two-Dimensional Diffraction Tomographic Algorithm for through -the-Wall Radar Imaging
By
Progress In Electromagnetics Research B, Vol. 31, 205-218, 2011
Abstract
In this paper, a two-dimensional (2D) diffraction tomographic algorithm based on the first order Born approximation is proposed for the imaging of hidden targets behind the wall. The spectral expansion of the three layered background medium Green's function is employed to derive a linear relationship between the spatial Fourier transforms of the image and the received scattered field. Then the image can be efficiently reconstructed with inverse Fast Fourier Transform (IFFT). The linearization of the inversion scheme and the easy implementation of the algorithm with FFT/IFFT make the diffraction tomographic algorithm suitable in through-the-wall radar imaging (TWRI) applications concerning the diagnostics of large probed domain and allow real-time processing. Numerical and experimental results are provided to show the effectiveness and high efficiency of the proposed diffraction tomographic algorithm for TWRI.
Citation
Wenji Zhang, and Ahmad Hoorfar, "Two-Dimensional Diffraction Tomographic Algorithm for through -the-Wall Radar Imaging," Progress In Electromagnetics Research B, Vol. 31, 205-218, 2011.
doi:10.2528/PIERB11042207
References

1. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," EEE Trans. Geosci. Remote Sensing, Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

2. Zhang, W., A. Hoorfar, and C. Thajudeen, "Polarimetric through-the-wall imaging," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 471-474, Berlin, Germany, 2010.

3. Dogaru, T. and C. Le, "SAR images of rooms and buildings based on FDTD computer models," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 5, 1388-1401, 2009.
doi:10.1109/TGRS.2009.2013841

4. Muqaibel, A., A. Safaai-Jazi, A. Bayram, A. Attiya, and S. Riad, "Ultra-wideband through-the-wall propagation," Proc. Inst. Elect. Eng.-Microw., Antennas Propag., Vol. 52, No. 6, 581-588, 2005.
doi:10.1049/ip-map:20050092

5. Baranoski, E. J., "Through wall imaging: Historical perspective and future directions," IEEE International Conference on Acoustics, Speech and Signal Processing, 5173-5176, 2008.
doi:10.1109/ICASSP.2008.4518824

6. Dogaru, T. and C. Le, "SAR images of rooms and buildings based on FDTD computer models," EEE Trans. Geosci. Remote Sensing, Vol. 47, No. 5, 1388-1401, 2009.
doi:10.1109/TGRS.2009.2013841

7. Ahmad, F. and M. G. Amin, "Noncoherent approach to through-the-wall radar localization," IEEE Trans. Aerospace and Electronic Systems, Vol. 42, No. 4, 1405-1419, 2006.
doi:10.1109/TAES.2006.314581

8. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Trans. Aerospace and Electronic Systems, Vol. 41, 271-283, 2005.
doi:10.1109/TAES.2005.1413761

9. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geosci. Remote Sensing Lett., Vol. 4, No. 4, 513-517, 2007.
doi:10.1109/LGRS.2007.900735

10. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 12, 2793-2798, 2005.
doi:10.1109/TGRS.2005.857914

11. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

12. Wolf, E., "Three-dimensional structure determination of semi-transparent objects from holography data," Opt. Commun., Vol. 1, 153-156, 1969.
doi:10.1016/0030-4018(69)90052-2

13. Deming, R. and A. J. Devaney, "Diffraction tomography for multi-monostatic ground penetrating radar imaging," Inverse Problems, Vol. 13, 29-45, 1997.
doi:10.1088/0266-5611/13/1/004

14. Hansen, T. B. and P. M. Johansen, "Inversion scheme for monostatic ground penetrating radar that takes into account the planar air-soil interface," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 496-506, 2000.
doi:10.1109/36.823944

15. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional dielectric objects buried under a lossy earth ," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 2033-2041, 2001.

16. Cui, T. J. and W. C. Chew, "Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half space ,", Vol. 50, 42-49, 2002.