Vol. 33
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-29
Refractivity from Clutter by Variational Adjoint Approach
By
Progress In Electromagnetics Research B, Vol. 33, 153-174, 2011
Abstract
Inferring refractivity profiles from radar sea clutter is a complex nonlinear optimization problem. Previous works treat this problem as a model parameter estimation issue by using some idealized refractivity models, such as the Log linear evaporation duct model, bilinear model, and trilinear model, to describe the synoptic structure of the real atmospheric conditions. However, these idealized models can not describe the exact information of the refractivity profile. Rather than estimating a few model parameters, this paper puts forward possibilities of retrieving the refractivity values at each point over height by variational adjoint approach for RFC measurement geometry. The adjoint model is derived from the parabolic equation for a smooth, perfectly conducting surface and horizontal polarization conditions. An evaporation duct profile collected at East China Sea is provided as the true refractive environment. The performance of this approach is determined via simulations and is evaluated as a function of: 1) the initial guess profile; 2) the measurement noise; and 3) the spatial samples.
Citation
Xiaofeng Zhao, and Sixun Huang, "Refractivity from Clutter by Variational Adjoint Approach," Progress In Electromagnetics Research B, Vol. 33, 153-174, 2011.
doi:10.2528/PIERB11061609
References

1. Yardim, C., Statistical estimation and tracking of refractivity from radar clutter, Ph.D. dissertation, Electrical Engineering, University of California, San Diego, 2007.

2. Wang, B., Z. S. Wu, Z. W. Zhao, and H. G. Wang, "Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm," Progress In Electromagnetics Research M, Vol. 9, 79-91, 2009.
doi:10.2528/PIERM09090403

3. Tabrikian, J., J. L. Krolik, and S. Vasudevan, "Estimating tropospheric refractivity parameters from radar sea clutter," Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, 345-348, IEEE Press, Piscataway, New Jersey.

4. Rogers, L. T., C. P. Hattan, and J. K. Stapleton, "Estimating evaporation duct heights from radar sea echo," Radio Sci., Vol. 35, No. 4, 955-966, 2000.
doi:10.1029/1999RS002275

5. Gerstoft, P., L. T. Rogers, J. L. Krolik, and W. S. Hodgkiss, "Inversion for refractivity parameters from radar sea clutter," Radio Sci., Vol. 38, No. 3, 8053, 2003, doi:10.1029/2002RS002640.
doi:10.1029/2002RS002640

6. Gerstoft, P., L. T. Rogers, W. S. Hodgkiss, and L. J. Wagner, "Refractivity estimation using multiple elevation angles," IEEE J. Oceanic Eng., Vol. 28, No. 3, 513-525, 2003.
doi:10.1109/JOE.2003.816680

7. Barrios, A. E., "Estimation of surface-based duct parameters from surface clutter using a ray trace approach," Radio Sci., Vol. 39, RS6013, 2004, doi:10.1029/2003RS002930.

8. Vasudevan, S., R. H. Anderson, S. Kraut, P. Gerstoft, L. T. Rogers, and J. Krolik, "Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter," Radio Sci., Vol. 42, RS2014, 2007, doi:10.1029/2005RS003423.

9. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Estimation of radio refractivity from radar clutter using bayesian monte carlo analysis," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1318-1327, 2006.
doi:10.1109/TAP.2006.872673

10. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Statistical maritime radar duct estimation using hybrid genetic algorithm-Markov chain Monte Carlo method ," Radio Sci., Vol. 42, RS3014, 2007, doi:10.1029/2006RS003561.
doi:10.1029/2006RS003561

11. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Tracking refractivity from clutter using Kalman and particle filters," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1058-1070, 2008.
doi:10.1109/TAP.2008.919205

12. Douvenot, R., V. Fabbro, P. Gerstoft, C. Bourlier, and J. Saillard, "A duct mapping method using least squares support vector machines," Radio Sci., Vol. 43, RS6005, 2008, doi:10.1029/2008RS003842.
doi:10.1029/2008RS003842

13. Douvenot, R., V. Fabbro, P. Gerstoft, C. Bourlier, and J. Saillard, "Real time refractivity from clutter using a best fit approach improved with physical information," Radio Sci., Vol. 45, RS1007, 2010, doi:10.1029/2009RS004137.
doi:10.1029/2009RS004137

14. Huang, S. X., X. F. Zhao, and Z. Sheng, "Refractivity estimation from radar sea clutter," Chin. Phys. B, Vol. 18, No. 11, 5084-5090, 2009.
doi:10.1088/1674-1056/18/11/079

15. Sheng, Z., S. X. Huang, and X. F. Zhao, "The determination of observation weight in inversion ocean duct using radar clutter," Acta Phys. Sin., Vol. 58, No. 9, 6627-6632, 2009.

16. Zhao, X. F., S. X. Huang, and Z. Sheng, "Ray tracing/correlation approach to estimation of surfaced-based duct parameters from radar clutter ," Chin. Phys. B, Vol. 19, No. 4, 049201, 2010.
doi:10.1088/1674-1056/19/4/049201

17. Huang, S. X. and R. S. Wu, Mathematical Physics Problems in Atmospheric Science, 2nd Ed., Meteorology Press, Beijing, China, 2005.

18. Hursky, P., M. B. Porter, B. D. Cornuelle, W. S. Hodgkiss, and W. A. Kuperman, "Adjoint modeling for acoustic inversion," J. Acoust. Soc. Am., Vol. 115, No. 2, 607-619, 2004.
doi:10.1121/1.1636760

19. Hermand, J. P., M. Meyer, M. Asch, and M. Berrada, "Adjoint-based acoustic inversion for the physical characterization of a shallow water environment," J. Acoust. Soc. Am., Vol. 119, No. 6, 3860-3871, 2006.
doi:10.1121/1.2197790

20. Zhao, X. F., S. X. Huang, and H. D. Du, "Theoretical analysis and numerical experiments of variational adjoint approach for refractivity estimation," Radio Sci., Vol. 46, RS1006, 2011, doi:10.1029/2010RS004417.
doi:10.1029/2010RS004417

21. Dockery, G. D., "Modeling electromagnetic wave propagation in the troposphere using the parabolic equation," IEEE Trans. Antennas Propag., Vol. 36, No. 10, 1464-1470, 1988.
doi:10.1109/8.8634

22. Barrios, A. E., Radio wave propagation in horizontally inhomogeneous environments by using the parabolic equation method , Technical Report, 1430, 1991.

23. Barrios, A. E., "Parabolic equation modeling in horizontally inhomogeneous environments," IEEE Trans. Antennas Propag., Vol. 40, No. 7, 791-797, 1992.
doi:10.1109/8.155744

24. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Sci., Vol. 26, No. 2, 381-393, 1991.
doi:10.1029/91RS00109

25. Barrios, A. E., "A terrain parabolic equation model for propagation in the troposphere," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 90-98, 1994.
doi:10.1109/8.272306

26. Hitney, H. V., J. H. Richter, R. A. Pappert, K. D. Anderson, and G. B. Baumgartner, "Tropospheric radio propagation assessment," Proceedings of the IEEE, Vol. 73, No. 2, 265-285, 1985.
doi:10.1109/PROC.1985.13138

27. Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal, "L-BFGS-B-Fortran subroutines for large-scale bound constrained optimization," Northwestern University EECS Technical Report NAM12, 1995.

28. Harris, F. J., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837

29. Ding, J. L., J. F. Fei, X. G. Huang, X. Zhang, X. Zhou, and B. Tian, "Contrast on occurrence of evaporation ducts in the south china sea and east china sea area," Chinese Journal of Radio Science, Vol. 24, No. 6, 1018-1023, 2009.

30. Hitney, H. V. and R. Vieth, "Statistical assessment of evaporation duct propagation," IEEE Trans. Antennas Propag., Vol. 38, No. 6, 794-799, 1990.
doi:10.1109/8.55574

31. Chen, Z. C., Partial Differential Equation, 2nd Ed., Chinese Science and Technology University Press, Hefei, China, 2002.