Systems that employ stimulating and implantable monitoring devices utilize inductive links, such as external and implanted coils. The calculation of the mutual inductance and the magnetic force between these coils is important for optimizing power transfer. This paper deals with an efficient and new approach for determining the mutual inductance and the magnetic force between two coaxial coils in air. The setup is comprised of a thick circular coil of the rectangular cross section and a thin wall solenoid. We use an integro-differential approach to calculate these electrical parameters. The mutual inductance and the magnetic force are obtained using the complete elliptic integrals of the first and second kind, Heuman's Lambda function and one term that has to be solved numerically. All possible regular and singular cases were solved. The results of the presented work have been verified with the filament method and previously published data. The advantage of these proposed formulas for mutual inductance or for the magnetic force is that they give the solution in the analytical and the semi-analytical form either for regular cases or singular cases. It is not case with already known methods in which it is necessary to take particular care of these cases of consideration.
2. Dwight, H. B., Electrical Coils and Conductors, McGraw-Hill Book Company, Inc., New York, 1945.
3. Snow, C., Formulas for Computing Capacitance and Inductance, National Bureau of Standards Circular 544, Washington DC, December 1954 .
4. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE Trans. Magn., Vol. 47, No. 8, August 2011.
doi:10.1109/TMAG.2011.2125796
5. Sonntag, C. L. W., E. A. Lomonova, and J. L. Duarte, "Implementation of the Neumann formula for calculating the mutual inductance between planar PCB inductors," ICEM: 2008 International Conference on Electrical Machines, Vol. 1-4, 876-881, 2009.
6. Keyi, Z., L. Bin, L. Zhiyuan, C. Shukang, and Z. Ruiping, "Inductance computation consideration of induction coil launcher," IEEE Trans. Magn., Vol. 45, No. 1, 336-340, January 2009.
doi:10.1109/TMAG.2008.2008833
7. Pichorim, S. F. and P. J. Abbati, "Design of coils for millimeter and submillimeter-sized biotelemetry," IEEE Trans. Biomed. Engin., Vol. 51, No. 8, 1487-1489, August 2004.
doi:10.1109/TBME.2004.827542
8. Zeirhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Engin., Vol. 43, No. 7, 708-714, July 1996.
doi:10.1109/10.503178
9. Flack, F. C., E. D. James, and D. M. Schlapp, "Mutual inductance of air-cored coils: Effect on design of radio frequency coupled implants," Med. Biol. Eng., Vol. 9, 79-85, 1971.
doi:10.1007/BF02474736
10. Heetderks, W. J., "RF powering of millimeter- and submillimeter-sized neural prosthetic implants," IEEE Trans. Biomed. Engin., Vol. 35, 323-327, May 1988.
doi:10.1109/10.1388
11. Jow, U. M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biom. Circ. Sys., Vol. 1, No. 3, 193-202, September 2007.
doi:10.1109/TBCAS.2007.913130
12. Sawan, M., S. Hashemi, M. Sehil, F. Awwad, M. H. Hassan, and A. Khouas, "Multicoils-based inductive links dedicated to power up implantable medical devices: Modeling, design and experimental results," Biomedical Microdevices: Springer, June 2009, doi:10.1007/s10544-009-9323-7.
13. Theodoulidis, T. and R. J. Ditchburn, "Mutual impedance of cylindrical coils at an arbitrary position and orientation above a planar conductor ," IEEE Trans. Magn., Vol. 43, No. 8, 3368-3370, August 2007.
doi:10.1109/TMAG.2007.894559
14. Engel, T. G. and S. N. Rohe, "A comparison of single-layer coaxial coil mutual inductance calculations using finite-element and tabulated methods," IEEE Trans. Magn., Vol. 42, No. 9, 2159-2163, September 2006.
doi:10.1109/TMAG.2006.880687
15. Su, Y. P., X. Liu, and S. Y. R. Hui, "Mutual inductance calculation of movable planar coils on parallel surfaces," IEEE Trans. Power Electronics, Vol. 24, No. 4, 1115-1124, April 2009.
doi:10.1109/TPEL.2008.2009757
16. Engel, T. G. and D. W. Mueller, "High-speed and high-accuracy method of mutual-inductance calculations," IEEE Trans. Plasma Science, Vol. 37, No. 5, 683-692, May 2009.
doi:10.1109/TPS.2009.2014764
17. Pahlavani, M. R. A. and A. Shoulaie, "A novel approach for calculations of helical toroidal coil inductance usable in reactor plasmas ," IEEE Trans. Plasma Science, Vol. 37, No. 8, 1593-1603, August 2009.
doi:10.1109/TPS.2009.2023548
18. Borghi, C. A., U. Reggiani, and G. Zama, "Calculation of mutual inductance by means of the toroidal multipole expansion method," IEEE Trans. Magn., Vol. 25, No. 4, 2992-2994, July 1989.
doi:10.1109/20.34348
19. Conway, J. T., "Inductance calculations for noncoaxial coils using bessel functions ," IEEE Trans. Magn., Vol. 43, No. 3, 1023-1034, 2007.
doi:10.1109/TMAG.2006.888565
20. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Trans. Magn., Vol. 46, No. 1, 75-81, 2010.
doi:10.1109/TMAG.2009.2026574
21. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128
22. Ravaud, R., G. Lemarquand, S. Babic, V. Lemarquand, and C. Akyel, "Cylindrical magnets and coils: Fields, forces and inductances ," IEEE Trans. Magn., Vol. 46, No. 9, 3585-3590, September 2010.
doi:10.1109/TMAG.2010.2049026
23. Ravaud, R., G. Lemarquand, V. Lemarquand, S. I. Babic, and C. Akyel, "Mutual inductance and force exerted between thick coils," Progress In Electromagnetics Research, Vol. 102, 367-380, 2010.
doi:10.2528/PIER10012806
24. Ren, Y., F.Wang, G. Kuang, W. Chen, Y. Tan, J. Zhu, and P. He, "Mutual inductance and force calculations between coaxial bitter coils and superconducting coils with rectangular cross section," J. Supercond. Nov. Magn., 2010, doi:10.1007/s10948-010-1086-0.
25. Babic, S. I. and C. Akyel, "New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air," IEEE Trans. Magn., Vol. 42, No. 6, 1661-1669, June 2006.
doi:10.1109/TMAG.2006.872626
26. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Trans. Magn., Vol. 44, No. 7, 1743-1750, July 2008.
doi:10.1109/TMAG.2008.920251
27. Babic, S. and C. Akyel, "An improvement in calculation of the self- and mutual inductance of thin-wall solenoids and disk coils," IEEE Trans. Magn., Vol. 36, No. 4, 678-684, July 2000.
28. Akyel, C., S. Babic, and S. Kincic, "New and fast procedures for calculating the mutual inductance of coaxial circular coils (disk coil-circular coil)," IEEE Trans. Magn., Vol. 38, No. 5, Part 1, 2367-2369, September 2002.
29. Babic, S. I. and C. Akyel, "An improvement in the calculation of the self-inductance of thin disk coils with air-core," WSEAS Transactions on Circuits and Systems, Vol. 3, No. 8, 1621-1626, ISSN 1109-2734, October 2004.
30. Babic, S., C. Akyel, and S. J. Salon, "New procedures for calculating the mutual inductance of the system: Filamentary circular coil-massive circular solenoid," IEEE Trans. Magn., Vol. 38, No. 5, 1234-1237, March 2003.
31. Babic, S., S. J. Salon, and C. Akyel, "The mutual inductance of two thin coaxial disk coils in air," IEEE Trans. Magn., Vol. 40, No. 1, 822-825, March 2004.
doi:10.1109/TMAG.2004.824810
32. Babic, S. I. and C. Akyel, "New mutual inductance calculation of the magnetically coupled coils: Thin disk coil-thin wall solenoid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1281-1290, 2006.
doi:10.1163/156939306779276794
33. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608
34. Coulomb, J. and G. Meunier, "Finite element implementation of virtual work principle for magnetic or electric force and torque computation," IEEE Trans. Magn., Vol. 20, No. 5, 1894-1896, September 1984.
doi:10.1109/TMAG.1984.1063232
35. Benhama, A., A. C. Williamson, and A. B. J. Reece, "Force and torque computation from 2-D and 3-D finite element field solutions," EE Proc. --- Electr. Power Apll., Vol. 146, No. 1, January 1999.
36. Babic, S. I. and C. Akyel, "Magnetic force calculation between thin coaxial circular coils in air," IEEE Trans. Magn., Vol. 44, No. 4, 445-452, April 2008.
doi:10.1109/TMAG.2007.915292
37. Akyel, C., S. I. Babic, S. Kincic, and P. J. Lagacé, "Magnetic force calculation between thin circular coils and thin filamentary circular coil in air ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1273-1283, 2007.
38. Ravaud, R. and G. Lemarquand, "Modeling an ironless loudspeaker by using three dimensional analytical approaches," Progress In Electromagnetics Research, Vol. 91, 53-68, 2009.
doi:10.2528/PIER09021104
39. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic pressure and shape of ferrofluid seals in cylindrical structures," Journal of Applied Physics, Vol. 106, 034911, 2009.
doi:10.1063/1.3187560
40. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets, part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088
41. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets, part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 1-9, 2009.
doi:10.1109/TMAG.2009.2025315
42. Koledintseva, M. Y., J. L. Drewniak, T. P. Van Doren, D. J. Pommerenke, M. Cocchini, and D. M. Hockanson, "Mutual external inductance in stripline structures," Progress In Electromagnetics Research, Vol. 80, 349-368, 2008.
doi:10.2528/PIER07111503
43. Conway, J. T., "Mutual inductance for an explicitly finite number of turns," Progress In Electromagnetics Research B, Vol. 28, 273-287, 2011.
44. Pahlavani, M. R. A. and A. Shiri, "Impact of dimensional parameters on mutual inductance of individual toroidal coils using analytical and ¯nite element methods applicable to tokamak reactors," Progress In Electromagnetics Research B, Vol. 24, 63-78, 2010.
doi:10.2528/PIERB10061204
45. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Series 55, 595, National Bureau of Standards Applied Mathematics, Washington DC, December 1972.
46. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press Inc., New York and London, 1965.
47. Matsukawa, M., S. Ishida, A. Sakasai, K. Urata, I. Senda, G. Kurita, H. Tamai, S. Sakurai, Y. M. Miura, K. Masaki, K. Shimada, and T. Terakado, "Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC," Fusion Engineering and Design, Elsevier, Vol. 66-68, 703-708, 2003.