Vol. 33

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-08-18

Genetic Algorithm and Finite Element Analysis for Optimum Design of Slotted Torus Axial-Flux Permanent-Magnet Brushless DC Motor

By Amin Mahmoudi, Nasrudin Abd Rahim, and Hew Wooi Ping
Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011
doi:10.2528/PIERB11070204

Abstract

This paper presents an inside-out axial-flux permanent-magnet brushless DC motor optimized by Finite Element Analysis (FEA) and Genetic Algorithm (GA) that uses sizing equation. The double-sided slotted-stator designed TORUS motor has sinusoidal back EMF waveform and maximum power density. The GA obtained the dimensions that gave the motor its highest power density. Field analysis of the dimensions was then put through FEA, to obtain and re-optimize the motor's characteristics. Possible design parameters were investigated via use of Commercial Vector Field Opera 14.0 software used in three-dimensional FEA simulation and of MATLAB 2010a in GA programming. Techniques such as modifying winding configuration and skewing the permanent magnets were explored to achieve the most-sinusoidal back-EMF waveform and minimized cogging torque. The desired technical specifications were matched by simulation results of the 3D FEA and the GA. The FEA and the GA simulation results comparison of the flux density in different parts of the designed motor at no-load condition agreed well.

Citation


Amin Mahmoudi, Nasrudin Abd Rahim, and Hew Wooi Ping, "Genetic Algorithm and Finite Element Analysis for Optimum Design of Slotted Torus Axial-Flux Permanent-Magnet Brushless DC Motor," Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011.
doi:10.2528/PIERB11070204
http://www.jpier.org/PIERB/pier.php?paper=11070204

References


    1. Hadef, M., M. R. Mekideche, A. Djerdir, A. Miraoui, and , "An inverse problem approach for parameter estimation of interior permanent magnet synchronous motor," Progress In Electromagnetics Research B, Vol. 31, 15-28, 2011.

    2. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
    doi:10.2528/PIER10092303

    3. Cho, C. P. and B. K. Fussel, "Detent torque and axial force effect in a dual air-gap axial-field brushless motor IEEE Transaction on Magnetics,", Vol. 6, 2416-2418, November 1993.

    4. Mendrela, E. A., R. Beniak, and R. Wrobel, "Influence of stator structure on electromechanical parameters of torus-type brushless DC motor," IEEE Transaction on Energy Conversion, Vol. 18, No. 2, 231-237, June 2003.
    doi:10.1109/TEC.2002.801733

    5. Lukaniszyn, M., M. Jagiela, and R. Wrobel, "A disc-type motor with co-axial flux in the stator-influence of magnetic circuit parameters on the torque," Electrical Engineering, Vol. 84, No. 2, 61-71, 2002.
    doi:10.1007/s00202-001-0107-1

    6. Chalmers, B. J. and E. Spooner, "An axial-flux permanent-magnet generator for a gearless wind energy system," IEEE Transaction on Energy Conversion, Vol. 14, 251-257, June 1999.
    doi:10.1109/60.766991

    7. Barakat, G., T. El-Meslouhi, and B. Dakyo, "Analysis of the cogging torque behavior of a two-phase axial flux permanent magnet synchronous machine," IEEE Transaction on Magnetics, Vol. 37, 2803-2805, July 2001.

    8. Liu, C. T. and S. C. Lee, "Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles," Journal of Magnetism and Magnetic Materials, Vol. 304, No. 1, 454-456, September 2006.
    doi:10.1016/j.jmmm.2006.02.065

    9. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet machine modeling, design, simulation, and analysis," Scientific Research and Essay (SRE), Vol. 6, No. 12, 2525-2549, June 2011.

    10. Barakat, G., T. El-meslouhi, and B. Dakyo, "Analysis of the cogging torque behavior of a two-phase axial flux permanent magnet synchronous machine," IEEE Transaction on Magnetics, Vol. 37, No. 4, 2803-2805, July 2001.
    doi:10.1109/20.951312

    11. Caricchi, F., F. Crescimbini, and O. Honrati, "Modular axial-flux permanent-magnet motor for ship propulsion drives," IEEE Transaction on Energy Conversion, Vol. 14, No. 3, 673-679, September 1999.
    doi:10.1109/60.790934

    12. Ficheux, R. L., F. Caricchi, F. Crescimbini, and O. Honorati, "Axial-flux permanent-magnet motor for direct-drive elevator systems without machine room," IEEE Transaction on Industry Applications, Vol. 37, No. 6, 1693-1701, November-December 2001.
    doi:10.1109/28.968180

    13. Gieras, J. F., R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Springer Verla, 2008.

    14. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "TORUS and AFIR axial-flux permanent-magnet machines: a comparison via finite element analysis," International Review on Modelling and Simulations, Vol. 4, No. 2, 624-631, April 2011.

    15. Liu, C. T., S. C. Lin, and T. S. Chiang, "On the analytical flux distribution modeling of an axial-flux surface-mounted permanent magnet motor for control applications original research," Journal of Magnetism and Magnetic Materials, Vol. 282, 346-350, November 2004.

    16. Gholamian, S. A., Optimum design and manufacturing of axial flux permanent magnet motor for electric vehicle application, Ph.D. Dissertation, K. N. Toosi Univ. Technology, Tehran, Iran, January 2008.

    17. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A general approach to sizing and power density equations for comparison of electrical machines," IEEE Transaction on Industry Applications, Vol. 34, No. 1, 92-97, January-February 1998.
    doi:10.1109/28.658727

    18. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A comparison of power density for axial flux machines based on the general purpose sizing equation," IEEE Transaction on Energy Conversion, Vol. 14, No. 2, 185-192, January 1999.
    doi:10.1109/60.766982

    19. Aydin, M., S. Huang, and T. A. Lipo, Design and 3D electromagnetic field analysis of non-slotted and slotted TORUS type axial flux surface mounted permanent magnet disc machines, IEEE International Electric Machines and Drives Conference.

    20. Aydin, M., S. Huang, and T. A. Lipo, "Optimum design and 3D finite element analysis of nonslotted and slotted internal rotor type axial flux PM disc machines," IEEE Power Engineering Society Summer Meeting, July 15-19, 2001.

    21. Rao, S. S., Optimization: Theory and Application, Wiley Eastern Limited, New Delhi, 1985.

    22. Rao, S. S., Engineering Optimization: Theory and Practice, Wiley, 1996.

    23. Pemha, E. and E. Ngo Nyobe, "Genetic algorithm approach and experimental confirmation of a laser-based diagnostic technique for the local thermal turbulence in a hot wind tunnel jet," Progress In Electromagnetics Research B, Vol. 28, 325-350, 2011.

    24. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Optimization, Wiley, New York, 2000.

    25. Rahim, N. A., W. P. Hew, and A. Mahmoudi, "Axial-flux permanent-magnet brushless dc traction motor for direct drive of electric vehicle ," International Review of Electrical Engineering, Vol. 6, No. 2, 760-769, April 2011.

    26. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
    doi:10.2528/PIERB09072309

    27. Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, January 1989.

    28. Conn, A. R., N. I. M. Gould, L. Toint, and Ph., "A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds," SIAM Journal on Numerical Analysis, Vol. 28, No. 2, 545-572, April 1991.
    doi:10.1137/0728030

    29. Conn, A. R., N. I. M. Gould, and Ph. L. Toint, "A globally convergent augmented lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds," Mathematics of Computation, Vol. 66, No. 217, 261-288, January 1997.
    doi:10.1090/S0025-5718-97-00777-1

    30. Üler, G. F., O. A. Mohammed, and C. S. Koh, "Utilizing, genetic algorithms for the optimal design of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 30, No. 6, November 1994.

    31. Üer, G. F., O. A. Mohammed, and C. S. Koh, "Design optimization of electrical machines using genetic algorithms," IEEE Transactions on Magnetics, Vol. 31, No. 3, May 1995.

    32. Wurtz, F., M. Richomme, J. Bigeon, and J. C. Sabonnadiere, "A few results for using genetic algorithms in the design of electrical machines," IEEE Transactions on Magnetics, Vol. 33, No. 2, May 1997.
    doi:10.1109/20.582656

    33. Mirzaeian, B., M. Moallem, V. Tahani, and C. Lucas, "Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design," IEEE Transactions on Magnetics, Vol. 30, No. 3, May 2002.

    34., MATLAB 2010a, User Guide, MathWorks Inc., 2010, http://www.mathworks.com.

    35. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Analytical method for determining axial-flux permanent-magnet machine sensitivity to design variables," International Review of Electrical Engineering, Vol. 5, No. 5, 2039-2048, September-October 2010.

    36. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
    doi:10.2528/PIER09052004

    37. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
    doi:10.2528/PIER10041406

    38. Torkaman, H. and E. Afjei, "Comparison of two types of dual ayer generator in field assisted mode utilizing 3D-FEM and experimental verification," Progress In Electromagnetics Research B, Vol. 23, 293-309, 2010.
    doi:10.2528/PIERB10060808

    39. Torkaman, H. and E. Afjei, "Magnetio static field analysis regarding the effects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
    doi:10.2528/PIERM09060205

    40., Opera Version 14.0 User Guide, Vector Fields, 2011, http://www.cobham.com.

    41. Wang, R. J., M. J. Kamper, and K. V. D. Westhuizen, "Optimal design of a coreless stator axial flux permanent magnet generator," IEEE Transaction on Magnetics, Vol. 41, No. 1, 55-64, January 2005.
    doi:10.1109/TMAG.2004.840183

    42. Saari, J., Thermal analysis of high-speed induction machines, Ph.D. Dissertation, Helsinki Univ. Technology, Helsinki, Finland, January 1998.

    43. Hanselman, D. C., Brushless Permanent Magnet Motor Design, McGraw-Hill, New York, 1994.