Vol. 34
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-09-19
Time-Interleaved Delta-Sigma Modulator for Wideband Digital GHz Transmitters Design and SDR Applications
By
Progress In Electromagnetics Research B, Vol. 34, 263-281, 2011
Abstract
This paper presents a development of a wideband delta-sigma modulator for fully digital GHz transmitters. The fully digital RF transmitter is developed as a promising solution for software defined radio (SDR) terminals and applications. The fully digital transmitter consists of a delta-sigma modulator, a high-speed multiplexer and a switching-mode power amplifier. The speed limitation of delta-sigma modulator is the main limitation to increase the signal bandwidth in fully digital transmitters. In this paper, the bandwidth of the fully digital transmitter is increased 8 times using parallel processing time-interleaved architecture, while maintaining the same signal quality. This architecture was implemented on FPGA and tested for different standards (WiMAX and LTE) with a signal bandwidth up to 8 MHz. The concept was assessed in terms of SNDR by using a differential logic analyzer at the output of FPGA, and the SNDR was found to be around 60 dB.
Citation
Mohammad Mojtaba Ebrahimi, Mohamed Helaoui, and Fadhel M. Ghannouchi, "Time-Interleaved Delta-Sigma Modulator for Wideband Digital GHz Transmitters Design and SDR Applications," Progress In Electromagnetics Research B, Vol. 34, 263-281, 2011.
doi:10.2528/PIERB11071205
References

1. Miller, S. L. and R. J. O'Dea, "Peak power and bandwidth efficient linear modulation," IEEE Trans. Comm., Vol. 46, No. 12, 1639-1648, Dec. 1998.
doi:10.1109/26.737402

2. Shameli, A., A. Safarian, A. Rofougaran, M. Rofougaran, and F. de Flaviis, "A two-point modulation technique for CMOS power amplifier in polar transmitter architecture," IEEE Trans. MTT, Vol. 56, No. 1, 31-38, Jan. 2008.
doi:10.1109/TMTT.2007.912012

3. Kimball, D. F., J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, "High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs," IEEE Trans. MTT, Vol. 54, No. 11, 3848-3856, Nov. 2006.
doi:10.1109/TMTT.2006.884685

4. Hietakangas, S., T. Rautio, and T. Rahkonen, "One GHz class E RF power amplifier for a polar transmitter," Springer Journal on Analog Integr. Circ. Sig Process., Vol. 54, No. 2, 85-94, 2008.
doi:10.1007/s10470-007-9109-x

5. Choi, J., J. Yim, J. Yang, J. Kim, J. Cha, D. Kang, D. Kim, and B. Kim, "A -digitized polar RF transmitter," IEEE Trans. MTT, Vol. 55, No. 12, 2679-2690, Dec. 2007.
doi:10.1109/TMTT.2007.907137

6. Jayaraman, P., F. Chen, G. Hanington, L. Larson, and P. Asbeck, "Linear high-e±ciency microwave power amplifiers using bandpass delta-sigma modulators," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 121-123, Mar. 1998.
doi:10.1109/75.661135

7. Johnson, T. and S. P. Stapleton, "RF class-D amplification with bandpass sigma-delta modulator drive signals," IEEE TCAS-I, Vol. 53, No. 12, 2507-2520, Dec. 2006.

8. Nielsen, M. and T. Larsen, "A transmitter architecture based on delta-sigma modulation and switch-mode power amplification," IEEE TCAS-II: Express Briefs, Vol. 54, No. 8, 735-739, Aug. 2007.
doi:10.1109/TCSII.2007.899457

9. Jerng, A. and C. G. Sodini, "A wideband digital-RF modulator for high data rate transmitters," IEEE JSSC, Vol. 42, No. 8, 1710-1722, Aug. 2007.

10. Helaoui, M., S. Hatami, R. Negra, and F. M. Ghannouchi, "A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design," IEEE TCAS-II Technical Briefs, Vol. 55, No. 11, 1129-1133, Nov. 2008.

11. Helaoui, M., S. Boumaiza, F. M. Ghannouchi, A. B. Kouki, and A. Ghazel, "A new mode-multiplexing LINC architecture to boost the e±ciency of WiMAX up-link transmitters," IEEE Trans. MTT, Vol. 55, No. 2, 248-253, Feb. 2007.
doi:10.1109/TMTT.2006.889318

12. Jheng, K., Y. Chen, and A. Wu, "Multilevel LINC system designs for power efficiency enhancement of transmitters," IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 3, 523-532, Jun. 2009.
doi:10.1109/JSTSP.2009.2020949

13. Ebrahimi, M. M., M. Helaoui, and F. M. Ghannouchi, "Analytical approach to optimize the efficiency of switching mode pas loaded with distributed matching networks," IET Microwaves, Antennas and Propagation, Vol. 5, No. 1, 57-67, Jan. 2011.
doi:10.1049/iet-map.2010.0037

14. Schreider, R. and G. C. Temes, Understanding Delta-sigma Data Converters, John Wiley & Sons, 2005.

15. Tsui, J. B., Digital Techniques for Wideband Receivers, 2nd Ed., SciTECH, 2004.

16. Pellon, L. E., "A double nyquist digital product detector for quadrature sampling," IEEE Trans. on Signal Processing, Vol. 40, No. 7, 1670-1681, Jul. 1992.
doi:10.1109/78.143439

17. Aziz, P., H. Sorensen, and J. van der Spiegel, "Multiband sigma-delta modulation," Electronics Letters, 760-762, Apr. 1993.
doi:10.1049/el:19930509

18. Galton, I. and H. T. Jensen, "Delta-sigma modulator based A/D conversion without oversampling," IEEE TCAS-II, Vol. 42, No. 12, 773-784, Dec. 1995.

19. Khoini-Poorfard, R., L. B. Lim, and D. A. Johns, "Time-interleaved oversampling A/D converters: Theory and practice," IEEE TCAS-II: Analog and Digital Signal Processing, Vol. 44, 634-645, Aug. 1997.

19. Kozak, M., M. Karaman, and I. Kale, "Efficient architectures for time-interleaved oversampling delta-sigma converters," IEEE TCAS-II: Analog and Digital Signal Processing, Vol. 47, No. 8, 802-810, Aug. 2000.

21. Kozak, M. and I. Kale, Oversampled Delta-sigma Modulators Analysis, Applications and Novel Topologies, 1st Ed., Springer, 2003.

22. Alter Stratix II GX Handbook.
doi:http://www.altera.com/liter-ature/lit-s2gx.jsp

23. Breems, L. J., R. Rutten, and G. Wetzker, "A cascaded continuous-time modulator with 67-dB dynamic range in 10-MHz bandwidth," IEEE J. Solid-state Circuits, Vol. 39, No. 12, 2152-2160, Dec. 2004.
doi:10.1109/JSSC.2004.836245

24. Balmelli, P. and Q. Huang, "A 25-MS/s 14-B 200-mW modulator in 0.18-¹m CMOS," IEEE J. Solid-state Circuits, Vol. 39, No. 12, 2161-2169, Dec. 2004.
doi:10.1109/JSSC.2004.836240

25. Paton, S., A. di Giandomenico, L. Hernandez, A. Wiesbauer, T. Potscher, and M. Clara, "A 70-mW 300-MHz CMOS continuous-time ADC with 15-MHz bandwidth and 11 bits of resolution," IEEE J. Solid-state Circuits, Vol. 39, No. 7, 1056-1063, Jul. 2004.
doi:10.1109/JSSC.2004.829925

26. Caldwell, T. C. and D. A. Johns, "A time-interleaved continuous-time modulator with 20-MHz signal bandwidth," IEEE J. Solid-state Circuits, Vol. 41, No. 7, 1578-1588, Jul. 2006.
doi:10.1109/JSSC.2006.873889

27. Crombez, P., G. van der Plas, M. S. J. Steyaert, and J. Craninckx, "A single-bit 500 kHz 10MHz multimode power-performance scalable 83-to-67 dB DR CT for SDR in 90nm digital CMOS ," IEEE J. Solid-state Circuits, Vol. 45, No. 6, 1159-1171, Jun. 2010.
doi:10.1109/JSSC.2010.2046230