Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Planar Inductor Design for High Power Applications

By Abdullah Eroglu
Progress In Electromagnetics Research B, Vol. 35, 53-67, 2011


Design, simulation, and implementation of low profile microstrip spiral inductors for high power Industrial, Scientific and Medical (ISM) applications at the high frequency (HF-3-30 MHz) range are given for the first time. An accurate analytical model and algorithm have been developed to determine the simplified lumped element equivalent model parameters for spiral inductor and its physical dimensions. Five different spiral inductors are then simulated with a planar electromagnetic simulator using the physical dimensions obtained for the desired inductance values with the analytical method. The implementation method and substrate selection for spiral inductors at the HF range are given in detail for high power applications. The spiral inductors are then constructed on 100 mil Alumina substrate and measured with network analyzer. It is found that analytical, simulation and measurement results are in close agreement and the analytical method and algorithm that have been developed can be used to accurately determine the physical dimensions, and the resonant frequency of the spiral inductor for the desired inductance value.


Abdullah Eroglu, "Planar Inductor Design for High Power Applications," Progress In Electromagnetics Research B, Vol. 35, 53-67, 2011.


    1. Long, J. R. and M. A. Copeland, "The modeling, characterization, and design of monolithic inductors for silicon RF IC's," IEEE J. of Solid-State Circuits, Vol. 32, 357-369, 1997.

    2. Niknejad, A. M. and R. G. Meyer, "Analysis, design, and optimization of spiral inductors and transformers for Si RF IC's," IEEE J. of Solid-State Circuits, Vol. 33, 1470-1481, 1998.

    3. Reyes, A. C., S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 43, 2016-2022, 1995.

    4. Ashby, K. B., I. C. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, "High Q inductors for wireless applications in a complementary silicon bipolar process," IEEE J. of Solid-State Circuits, Vol. 31, 4-9, 1996.

    5. Lu, L.-H., G. E. Ponchak, P. Bhattacharya, and L. P. B. Katehi, "High-Q X-band and K‘-band micromachined spiral inductors for use in Si-based integrated circuits," Proc. Silicon Monolithic Integrated Circuits RF Syst., 108-112, 2000.

    6. Bahl, I. J., "Improved quality factor spiral inductor on GaAs substrates," IEEE Microwave Guided Wave Lett., Vol. 9, 398-400, 1999.

    7. Ribas, R. P., J. Lescot, J. L. Leclercq, N. Bernnouri, J. M. Karam, and B. Courtois, "Micromachined planar spiral inductor in standard GaAs HEMT MMIC technology," IEEE Electron Device Lett., Vol. 19, 285-287, 1998.

    8. Takenaka, H. and D. Ueda, "0.15 μm T-shaped gate fabrication for GaAs MODFET using phase shift lithography," IEEE Trans. on Electron Devices, Vol. 43, 238-244, 1996.

    9. Chiou, M. H. and K. Y. J. Hsu, "A new wideband modeling technique for spiral inductors," IET Microwave, Antennas, and Propagation, Vol. 151, 115-120, 2006.

    10. Lu, H.-C., T. B. Chan, C. C.-P. Chen, and C.-M. Liu, "LTCC spiral inductor synthesis and optimization with measurement verification," IEEE Trans. on Advanced Packaging, Vol. 33, 2010.

    11. Talwalkar, N. A., C. P. Yue, and S. S. Wong, "Analysis and synthesis of on-chip spiral inductors," IEEE Trans. on Electron Devices, Vol. 52, 176-182, 2005.

    12. Mukherjee, S., B. Mutnury, S. Dalmia, and M. Swaminathan, "Layout-level synthesis of RF inductors and filters in LCP substrate for Wi-Fi applications," IEEE Trans. on Microwave Theory and Tech., Vol. 53, 2196-2210, 2005.

    13. Kulkarni, J. P., C. Augustine, B. Jung, and K. Roy, "Nano spiral inductors for low-power digital spintronic circuits," IEEE Trans. on Magnetics, Vol. 46, 1898-1901, 2010.

    14. Greenhouse, H. M., "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids and Packaging, Vol. 10, 101-109, 1974.

    15. Jenei, S., B. K. J. C. Nauwelaers, and S. Decoutere, "Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors," IEEE J. of Solid-State Circuits, Vol. 37, 77-80, 2002.

    16. Asgaran, S., "New accurate physics-based closed-form expressions for compact modeling and design of on-chip spiral inductors," Proc. 14th Int. Conf. Microelectronics, 247-250, 2002.

    17. Mohan, S. S., M. M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductance," IEEE J. of Solid-State Circuits, Vol. 34, 1419-1424, 1999.

    18. Chen, C. C., J. K. Huang, and Y. T. Cheng, "A closed-form integral model of spiral inductor using the Kramers-Kronig relations," IEEE Microwave AMD Wireless Comp. Letters, Vol. 15, 2005.

    19. Sieiro, J., J. M. Lopez-Villegas, J. Cabanillas, J. A. Osorio, and J. Samitier, "A physical frequency-dependent compact model for RF integrated inductors," IEEE Trans. on Microwave Theory and Tech., Vol. 50, 384-392, 2002.

    20. Sun, H., Z. Liu, J. Zhao, L. Wang, and J. Zhu, "The enhancement of Q-factor of planar spiral inductor with low-temperature annealing," IEEE Trans. on Electron Devices, Vol. 55, 931-936, 2008.

    21. Tsai, H. S., J. Lin, R. C. Frye, K. L. Tai, M. Y. Lau, D. Kossives, F. Hrycenko, and Y. K. Chen, "Investigation of current crowding effect on spiral inductors," IEEE MTT-S Symp. on Technologies to Wireless Applications, 139-142, 1997.

    22. Bushyager, N., M. Davis, E. Dalton, J. Laskar, and M. Tentzeris, "Q-factor and optimization of multilayer inductors for RF packaging microsystems using time domain techniques," Electronic Components and Technology Conference, 1718-1721, 2002.

    23. Eroglu, A. and J. K. Lee, "The complete design of microstrip directional couplers using the synthesis technique," IEEE Transactions on Instrumentation and Measurement, Vol. 12, 2756-2761, 2008.

    24. Costa, E. M. M., "Parasitic capacitances on planar coil," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2339-2350, 2009.

    25. Aluminum Oxide Material Properties: http://accuratus.com/alumox.html..