Vol. 35
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-15
Development of Novel Tunable Dual-Band Negative Index Metamaterial Using Open Stub-Loaded Stepped-Impedance Resonator
By
Progress In Electromagnetics Research B, Vol. 35, 111-131, 2011
Abstract
This study reports on tunable planar metamaterial design that is capable to achieve dual-band negative index of refraction responses operating in microwave regime. Its distinctive characteristic is the usage of tuning open stub-loaded stepped-impedance resonators. Parameters retrieval algorithm, and full-wave simulation of prism-shaped structure were carried out to validate the negative refraction characteristics of metamaterial structure. The results predict its prospect as a very promising alternative to the conventional ones, which is compatibly applicable on various potential microwave devices especially when dual-band function is required. In addition to that, its design flexibility offers a various frequency bands at any possible choice, which is alterable together with any design parameters changes.
Citation
Adam Reda Hasan Alhawari, Alyani Ismail, Mohd Adzir Mahdi, and Raja Syamsul Azmir Raja Abdullah, "Development of Novel Tunable Dual-Band Negative Index Metamaterial Using Open Stub-Loaded Stepped-Impedance Resonator," Progress In Electromagnetics Research B, Vol. 35, 111-131, 2011.
doi:10.2528/PIERB11082209
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Applied Physics Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Shelby, R., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

6. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Applied Physics Letters, Vol. 84, 1537-1539, 2004.
doi:10.1063/1.1655673

7. Baena, J. D., R. Marques, and F. Medina, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, 014402/1-014402/5, 2004.
doi:10.1103/PhysRevB.69.014402

8. Zhou, J., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters, Vol. 88, 221103/1-221103/3, 2006.

9. Kafesaki, M., I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterial: The fishnet structure and its variations," Physical Review B, Vol. 75, 235114/1-235114/9, 2007.
doi:10.1103/PhysRevB.75.235114

10. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics and Nanostructures-Fundamentals and Applications, Vol. 6, No. 1, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001

11. Isik, O. and K. P. Esselle, "Analysis of spiral metamaterials by use of group theory," Metamaterials, Vol. 3, No. 1, 33-43, 2009.
doi:10.1016/j.metmat.2008.10.002

12. Wang, J., S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, "Broadband planar left-handed metamaterials using split-ring resonator pairs," Photonics and Nanostructures-Fundamentals and Applications, Vol. 7, No. 2, 108-113, 2009.
doi:10.1016/j.photonics.2009.01.001

13. Donzelli, G., A. Vallecchi, F. Capolino, and A. Schuchinsky, "Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties," Metamaterials, Vol. 3, No. 1, 10-27, 2009.
doi:10.1016/j.metmat.2008.12.001

14. Vallecchi, A., F. Capolino, A. G. Schuchinsky, and A. G. Schuchinsky, "2-D isotropic effective negative refractive index metamaterial in planar technology," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 269-271, 2009.
doi:10.1109/LMWC.2009.2017585

15. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, and X.Wu, "A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.
doi:10.2528/PIERL08120708

16. Ekmekci, E. and G. Turhan-Sayan, "Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters," Progress In Electromagnetics Research B, Vol. 12, 35-62, 2009.
doi:10.2528/PIERB08120405

17. Zhou, X., Y. Liu, and X. Zhao, "Low losses left-handed materials with optimized electric and magnetic resonance," Applied Physics A: Materials Science and Processing, Vol. 98, No. 3, 643-649, 2009.

18. Zhu, C., J. -J. Ma, L. Chen, and C. -H. Liang, "Negative index metamaterials composed of triangular open-loop resonator and wire structures," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2009.

19. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for S- and C- microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
doi:10.2528/PIERB10051705

20. Nemer, S., B. Sauviac, B. Bayard, C. Nader, J. Bechara, and A. Khoury, "Modelling resonance frequencies of a multi-turn spiral for metamaterial applications," Progress In Electromagnetics Research C, Vol. 20, 31-42, 2011.

21. Alhawari, A. R. H., A. Ismail, M. A. Mahdi, and R. S. A. R. Abdullah, "Miniaturized ultra-wideband antenna using microstrip negative index metamaterial," Electromagnetics, Vol. 31, No. 6, 404-418, 2011.
doi:10.1080/02726343.2011.590961

22. Kwon, D.-H., D. H. Werner, A. V. Kildishev, and V. M. Shalaev, "Near-infrared metamaterials with dual-band negative-index characteristics," Optics Express, Vol. 15, No. 4, 1647-1652, 2007.
doi:10.1364/OE.15.001647

23. Hu, C. L., Liu, X. Chen, and X. Luo, "Expanding the band of negative permeability of a composite structure with dual-band negative permeability," Optics Express, Vol. 16, No. 26, 21544-21549, 2008.
doi:10.1364/OE.16.021544

24. Hu, C., L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, "Multimode magnetic responses in NIR and visible ranges," Applied Physics B: Laser and Optics, Vol. 96, No. 2--3, 439-443, 2009.

25. Ekmekci, E. and G. Turhan-Sayan, "A novel dual-band metamaterial structure," PIERS Proceedings, 87-91, Moscow, Russia, August 18--21, 2009.

26. Huang, C., Z. Zhao, Q. Feng, J. Cui, and X. Luo, "Metamaterial composed of wire pairs exhibiting dual band negative refraction," Applied Physics B: Lasers and Optics, Vol. 98, No. 2--3, 365-370, 2009.

27. Gundogdu, T. F., K. Guven, M. Gokkavas, C. M. Soukoulis, and E. Ozbay, "A planar metamaterial with dual-band double-negative response at EHF," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 2, 376-379, 2010.
doi:10.1109/JSTQE.2009.2031618

28. Naghipourfar, M. and Z. Atlasbaf, "New dual-band DNG metamaterials," Canadian Journal on Electrical and Electronics Engineering, Vol. 2, No. 2, 47-56, February 2011.

29. Chu, Q.-X. and F.-C. Chen, "A compact dual-band bandpass filter using meandering stepped impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 320-322, May 2008.
doi:10.1109/LMWC.2008.922117

30. Chu, Q.-X. and F.-C. Chen, "A novel dual-band bandpass filter using stepped impedance resonators with transmission zeros," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1466-1468, June 2008.
doi:10.1002/mop.23394

31. Velazquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

32. Namsang, A. and P. Akkaraekthalin, "Microstrip bandpass filters using end-coupled asymmetrical step-impedance resonators for wide-spurious response," Progress In Electromagnetics Research C, Vol. 14, 53-65, 2010.
doi:10.2528/PIERC10012704

33. Xiao, J.-K. and H.-F. Huang, "New dual-band bandpass filter with compact sir structure," Progress In Electromagnetics Research Letters, Vol. 18, 125-134, 2010.
doi:10.2528/PIERL10082202

34. Zhang, X. Y., C. H. Chan, Q. Xue, and B.-J. Hu, "Dual-band bandpass filter with controllable bandwidths using two coupling paths," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 11, 616-618, November 2010.
doi:10.1109/LMWC.2010.2066553

35. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication, Springer-Verlag, Berlin, Heidelberg, 2001.

36. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.2528/PIER08102303

37. Chen, F.-C., Q.-X. Chu, and Z.-H. Tu, "Design of compact dual-band bandpass filter using short stub loaded resonator," Microwave and Optical Technology Letters, Vol. 51, No. 4, 959-963, April 2009.
doi:10.1002/mop.24209

38. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.

39. Kuo, J. T. and C. Y. Tsai, "Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 1107-1112, March 2006.
doi:10.1109/TMTT.2005.864121

40. Chen, C. F., T. Y. Huang, and R. B. Wu, "Design of dual-and triple-passband filters using alternately cascaded multiband resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 9, 3550-3558, September 2006.
doi:10.1109/TMTT.2006.880653

41. Weng, M. H., H. W. Wu, and Y. K. Su, "Compact and low-loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 3, 187-189, March 2007.
doi:10.1109/LMWC.2006.890463

42. Chen, F.-C. and Q.-X. Chu, "Novel multistub loaded resonator and its application to high-order dual-band filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 6, 1551-1556, June 2010.
doi:10.1109/TMTT.2010.2049161

43. Computer Simulation Technology (CST) Microwave Studio, Version 2010.

44. Hong, J.-S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

45. Smith, D. R., S. Shultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefflcients," Physics Review B, Vol. 65, 195104-195101--95104-195105, 2002.

46. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E 70, 016608/1-016608/7, 2004.

47. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617/1-036617/11, 2005.
doi:10.1103/PhysRevE.71.061902

48. Grzegorczyk, T. M., M. Nikku, X. Chen, B.-I.Wu, and J. A. Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1443-1450, 2005.
doi:10.1109/TMTT.2005.845206

49. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9