Vol. 38
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-11
Reconfigurable Fishnet Metamaterial Using Pneumatic Actuation
By
Progress In Electromagnetics Research B, Vol. 38, 57-70, 2012
Abstract
The design, fabrication and measurement of a reconfigurable fishnet metamaterial based on a new method of tuning by changing unit cell geometry is reported. Retractable elements are added to the unit cell utilizing pneumatically actuated switching. It is shown that the pneumatic actuation approach can unite a number of metallic elements into a complex conducting structure. Experimental demonstration confirms that the structure operates at two different frequencies in the GHz range in distinct actuation states. The measured results also show good agreement with numerical simulations.
Citation
Iryna Khodasevych, Wayne Rowe, and Arnan Mitchell, "Reconfigurable Fishnet Metamaterial Using Pneumatic Actuation," Progress In Electromagnetics Research B, Vol. 38, 57-70, 2012.
doi:10.2528/PIERB11102505
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

3. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, No. 23, 2007.
doi:10.1103/PhysRevB.75.235114

4. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376-379, 2008.
doi:10.1038/nature07247

5. Driscoll, T., S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, "Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide," Appl. Phys. Lett., Vol. 93, No. 2, 2008.
doi:10.1063/1.2956675

6. Chen, H. T., J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon., Vol. 2, No. 5, 295-298, 2008.
doi:10.1038/nphoton.2008.52

7. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photon. Nanostruct: Fundam. Appl., Vol. 7, No. 2, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005

8. Khodasevych, I. E., W. S. T. Rowe, and A. Mitchell, "A reconfigurable fishnet metamaterial design using MEMS principle," 4th Int. Congr. on Adv. Electromagn. Materials in Microwaves and Optics, Metamaterials, 459-461, Karlsruhe, 2010.

9. Ekmekci, E., K. Topalli, T. Akin, and G. Turhan-Sayan, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Express, Vol. 17, No. 18, 16046-16058, 2009.
doi:10.1364/OE.17.016046

10. He, X., Y. Wang, J. Wang, and T. Gui, "MEMS switches controlled multi-split ring resonator as a tunable metamaterial component," Microsyst. Technol., Vol. 16, No. 11, 1831-1837, 2010.
doi:10.1007/s00542-010-1126-5

11. Jeong, O. C. and S. Konishi, "Fabrication and drive test of pneumatic PDMS micro pump," Sensors and Actuators A, Vol. 135, No. 2, 849-856, 2007.
doi:10.1016/j.sna.2006.09.012

12. Werber, A. and H. Zappe, "Tunable pneumatic microoptics," Journal of Microelectromechanical Systems, Vol. 17, No. 5, 1218-1227, 2008.
doi:10.1109/JMEMS.2008.928712

13. Ramakrishna, S. A. and T. M. Gregorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press, Belligham, Washington USA, 2009.

14. Alici, K. B. and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys., Vol. 41, No. 13, 135011, 2008.
doi:10.1088/0022-3727/41/13/135011

15. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 1951041-1951045, 2002.
doi:10.1103/PhysRevB.65.195104